Portrait of Chris Pal

Chris Pal

Core Academic Member
Canada CIFAR AI Chair
Full Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Deep Learning

Biography

Christopher Pal is a Canada CIFAR AI Chair, full professor at Polytechnique Montréal and adjunct professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal. He is also a Distinguished Scientist at ServiceNow Research.

Pal has been involved in AI and machine learning research for over twenty-five years and has published extensively on large-scale language modelling methods and generative modelling techniques. He has a PhD in computer science from the University of Waterloo.

Current Students

Research Intern - McGill University
Postdoctorate - HEC Montréal
Principal supervisor :
Collaborating researcher - McGill University
Principal supervisor :
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Co-supervisor :
Collaborating Alumni - Polytechnique Montréal
PhD - Polytechnique Montréal
Postdoctorate - McGill University
Co-supervisor :
Master's Research - Polytechnique Montréal
PhD - Université de Montréal
Co-supervisor :
Master's Research - Concordia University
Co-supervisor :
Collaborating researcher - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - École de technologie suprérieure
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - HEC Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Polytechnique Montréal

Publications

Reinforcement Learning with Random Delays
Simon Ramstedt
Yann Bouteiller
Jonathan Binas
Action and observation delays commonly occur in many Reinforcement Learning applications, such as remote control scenarios. We study the ana… (see more)tomy of randomly delayed environments, and show that partially resampling trajectory fragments in hindsight allows for off-policy multi-step value estimation. We apply this principle to derive Delay-Correcting Actor-Critic (DCAC), an algorithm based on Soft Actor-Critic with significantly better performance in environments with delays. This is shown theoretically and also demonstrated practically on a delay-augmented version of the MuJoCo continuous control benchmark.
Accounting for Variance in Machine Learning Benchmarks
Xavier Bouthillier
Pierre Delaunay
Mirko Bronzi
Assya Trofimov
Brennan Nichyporuk
Justin Szeto
Naz Sepah
Edward Raff
Kanika Madan
Vikram Voleti
Vincent Michalski
Dmitriy Serdyuk
Gael Varoquaux
Strong empirical evidence that one machine-learning algorithm A outperforms another one B ideally calls for multiple trials optimizing the l… (see more)earning pipeline over sources of variation such as data sampling, data augmentation, parameter initialization, and hyperparameters choices. This is prohibitively expensive, and corners are cut to reach conclusions. We model the whole benchmarking process, revealing that variance due to data sampling, parameter initialization and hyperparameter choice impact markedly the results. We analyze the predominant comparison methods used today in the light of this variance. We show a counter-intuitive result that adding more sources of variation to an imperfect estimator approaches better the ideal estimator at a 51 times reduction in compute cost. Building on these results, we study the error rate of detecting improvements, on five different deep-learning tasks/architectures. This study leads us to propose recommendations for performance comparisons.
Conditionally Adaptive Multi-Task Learning: Improving Transfer Learning in NLP Using Fewer Parameters & Less Data
Jonathan Pilault
Amine El hattami
Multi-Task Learning (MTL) networks have emerged as a promising method for transferring learned knowledge across different tasks. However, MT… (see more)L must deal with challenges such as: overfitting to low resource tasks, catastrophic forgetting, and negative task transfer, or learning interference. Often, in Natural Language Processing (NLP), a separate model per task is needed to obtain the best performance. However, many fine-tuning approaches are both parameter inefficient, i.e., potentially involving one new model per task, and highly susceptible to losing knowledge acquired during pretraining. We propose a novel Transformer based Hypernetwork Adapter consisting of a new conditional attention mechanism as well as a set of task-conditioned modules that facilitate weight sharing. Through this construction, we achieve more efficient parameter sharing and mitigate forgetting by keeping half of the weights of a pretrained model fixed. We also use a new multi-task data sampling strategy to mitigate the negative effects of data imbalance across tasks. Using this approach, we are able to surpass single task fine-tuning methods while being parameter and data efficient (using around 66% of the data). Compared to other BERT Large methods on GLUE, our 8-task model surpasses other Adapter methods by 2.8% and our 24-task model outperforms by 0.7-1.0% models that use MTL and single task fine-tuning. We show that a larger variant of our single multi-task model approach performs competitively across 26 NLP tasks and yields state-of-the-art results on a number of test and development sets.
Structural Inductive Biases in Emergent Communication
Agnieszka M Slowik
Abhinav Gupta
William L. Hamilton
M. Jamnik
S. Holden
In order to communicate, humans flatten a complex representation of ideas and their attributes into a single word or a sentence. We investig… (see more)ate the impact of representation learning in artificial agents by developing graph referential games. We empirically show that agents parametrized by graph neural networks develop a more compositional language compared to bag-of-words and sequence models, which allows them to systematically generalize to new combinations of familiar features.
Bijective-Contrastive Estimation
Jae Hyun Lim
Chin-Wei Huang
In this work, we propose Bijective-Contrastive Estimation (BCE), a classification-based learning criterion for energy-based models. We gener… (see more)ate a collection of contrasting distributions using bijections, and solve all the classification problems between the original data distribution and the distributions induced by the bijections using a classifier parameterized by an energy model. We show that if the classification objective is minimized, the energy function will uniquely recover the data density up to a normalizing constant. This has the benefit of not having to explicitly specify a contrasting distribution, like noise contrastive estimation. Experimentally, we demonstrate that the proposed method works well on 2D synthetic datasets. We discuss the difficulty in high dimensional cases, and propose potential directions to explore for future work.
AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation
Jae Hyun Lim
Chin-Wei Huang
On Extractive and Abstractive Neural Document Summarization with Transformer Language Models
Jonathan Pilault
Raymond Li
Sandeep Subramanian
We present a method to produce abstractive summaries of long documents that exceed several thousand words via neural abstractive summarizati… (see more)on. We perform a simple extractive step before generating a summary, which is then used to condition the transformer language model on relevant information before being tasked with generating a summary. We also show that this approach produces more abstractive summaries compared to prior work that employs a copy mechanism while still achieving higher ROUGE scores. We provide extensive comparisons with strong baseline methods, prior state of the art work as well as multiple variants of our approach including those using only transformers, only extractive techniques and combinations of the two. We examine these models using four different summarization tasks and datasets: arXiv papers, PubMed papers, the Newsroom and BigPatent datasets. We find that transformer based methods produce summaries with fewer n-gram copies, leading to n-gram copying statistics that are more similar to human generated abstracts. We include a human evaluation, finding that transformers are ranked highly for coherence and fluency, but purely extractive methods score higher for informativeness and relevance. We hope that these architectures and experiments may serve as strong points of comparison for future work. Note: The abstract above was collaboratively written by the authors and one of the models presented in this paper based on an earlier draft of this paper.
COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital Contact Tracing
Prateek Gupta
Martin Weiss
Nasim Rahaman
Hannah Alsdurf
Abhinav Sharma
Nanor Minoyan
Soren Harnois-Leblanc
Victor Schmidt
Pierre-Luc St-Charles
Tristan Deleu
andrew williams
Akshay Patel
Meng Qu
Olexa Bilaniuk
gaetan caron
pierre luc carrier
satya ortiz gagne
Marc-Andre Rousseau
Joumana Ghosn
Yang Zhang
Bernhard Schölkopf
Joanna Merckx
Learning to Summarize Long Texts with Memory Compression and Transfer
Jaehong Park
Jonathan Pilault
Preface
Ismail Ben Ayed
Marleen de Bruijne
Maxime Descoteaux
Robust motion in-betweening
Félix Harvey
Mike Yurick
In this work we present a novel, robust transition generation technique that can serve as a new tool for 3D animators, based on adversarial … (see more)recurrent neural networks. The system synthesises high-quality motions that use temporally-sparse keyframes as animation constraints. This is reminiscent of the job of in-betweening in traditional animation pipelines, in which an animator draws motion frames between provided keyframes. We first show that a state-of-the-art motion prediction model cannot be easily converted into a robust transition generator when only adding conditioning information about future keyframes. To solve this problem, we then propose two novel additive embedding modifiers that are applied at each timestep to latent representations encoded inside the network's architecture. One modifier is a time-to-arrival embedding that allows variations of the transition length with a single model. The other is a scheduled target noise vector that allows the system to be robust to target distortions and to sample different transitions given fixed keyframes. To qualitatively evaluate our method, we present a custom MotionBuilder plugin that uses our trained model to perform in-betweening in production scenarios. To quantitatively evaluate performance on transitions and generalizations to longer time horizons, we present well-defined in-betweening benchmarks on a subset of the widely used Human3.6M dataset and on LaFAN1, a novel high quality motion capture dataset that is more appropriate for transition generation. We are releasing this new dataset along with this work, with accompanying code for reproducing our baseline results.
Towards an Unsupervised Method for Model Selection in Few-Shot Learning
Simon Guiroy
Vikas Verma
The study of generalization of neural networks in gradient-based meta-learning has recently great research interest. Previous work on the st… (see more)udy of the objective landscapes within the scope of few-shot classification empirically demonstrated that generalization to new tasks might be linked to the average inner product between their respective gradients vectors (Guiroy et al., 2019). Following that work, we study the effect that meta-training has on the learned space of representation of the network. Notably, we demonstrate that the global similarity in the space of representation, measured by the average inner product between the embeddings of meta-test examples, also correlates to generalization. Based on these observations, we propose a novel model-selection criterion for gradient-based meta-learning and experimentally validate its effectiveness.