Portrait of Aaron Courville

Aaron Courville

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Computer Vision
Deep Learning
Efficient Communication in General Sum Game
Game Theory
Generative Models
Multi-Agent Systems
Natural Language Processing
Reinforcement Learning
Representation Learning

Biography

Aaron Courville is a professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal and Scientific Director of IVADO. He has a PhD from the Robotics Institute, Carnegie Mellon University.

Courville was an early contributor to deep learning: he is a founding member of Mila – Quebec Artificial Intelligence Institute. Together with Ian Goodfellow and Yoshua Bengio, he co-wrote the seminal textbook on deep learning.

His current research focuses on the development of deep learning models and methods. He is particularly interested in reinforcement learning, multi-agent reinforcement learning, deep generative models and reasoning.

Courville holds a Canada CIFAR AI Chair and a Canada Research Chair in Systematic Generalization. His research has been supported by Microsoft Research, Samsung, Hitachi, Meta, Sony (Research Award) and Google (Focused Research Award).

Current Students

PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Professional Master's - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :

Publications

Scaling Stick-Breaking Attention: An Efficient Implementation and In-depth Study
Shawn Tan
Songlin Yang
Rameswar Panda
Yikang Shen
The self-attention mechanism traditionally relies on the softmax operator, necessitating positional embeddings like RoPE, or position biases… (see more) to account for token order. But current methods using still face length generalisation challenges. We investigate an alternative attention mechanism based on the stick-breaking process in larger scale settings. The method works as follows: For each token before the current, we determine a break point, which represents the proportion of the stick, the weight of the attention, to allocate to the current token. We repeat this on the remaining stick, until all tokens are allocated a weight, resulting in a sequence of attention weights. This process naturally incorporates recency bias, which has linguistic motivations for grammar parsing (Shen et al., 2017). We study the implications of replacing the conventional softmax-based attention mechanism with stick-breaking attention. We then discuss implementation of numerically stable stick-breaking attention and adapt Flash Attention to accommodate this mechanism. When used as a drop-in replacement for current softmax+RoPE attention systems, we find that stick-breaking attention performs competitively with current methods on length generalisation and downstream tasks. Stick-breaking also performs well at length generalisation, allowing a model trained with
Asynchronous RLHF: Faster and More Efficient Off-Policy RL for Language Models
Michael Noukhovitch
Shengyi Huang
Sophie Xhonneux
Arian Hosseini
The dominant paradigm for RLHF is online and on-policy RL: synchronously generating from the large language model (LLM) policy, labelling wi… (see more)th a reward model, and learning using feedback on the LLM's own outputs. While performant, this paradigm is computationally inefficient. Inspired by classical deep RL literature, we propose separating generation and learning in RLHF. This enables asynchronous generation of new samples while simultaneously training on old samples, leading to faster training and more compute-optimal scaling. However, asynchronous training relies on an underexplored regime, online but off-policy RLHF: learning on samples from previous iterations of our model. To understand the challenges in this regime, we investigate a fundamental question: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? Among several RLHF algorithms we tested, we find that online DPO is most robust to off-policy data, and robustness increases with the scale of the policy model. We study further compute optimizations for asynchronous RLHF but find that they come at a performance cost, giving rise to a trade-off. Finally, we verify the scalability of asynchronous RLHF by training LLaMA 3.1 8B on an instruction-following task 40% faster than a synchronous run while matching final performance.
Stick-breaking Attention
Shawn Tan
Yikang Shen
Songlin Yang
Rameswar Panda
Stick-breaking Attention
Shawn Tan
Yikang Shen
Songlin Yang
Rameswar Panda
Stick-breaking Attention
Shawn Tan
Yikang Shen
Songlin Yang
Rameswar Panda
Stick-breaking Attention
Shawn Tan
Yikang Shen
Songlin Yang
Rameswar Panda
Stick-breaking Attention
Shawn Tan
Yikang Shen
Songlin Yang
Rameswar Panda
Faster, More Efficient RLHF through Off-Policy Asynchronous Learning
Michael Noukhovitch
Shengyi Huang
Sophie Xhonneux
Arian Hosseini
To achieve state-of-the-art chatbots, large language models are finetuned with reinforcement learning (RL), frequently to optimize human fee… (see more)dback (RLHF). This process is computationally expensive and can take weeks. Offline approaches, like DPO, learn on a static dataset and are efficient but not performant. The dominant paradigm, online and on-policy---synchronously generating from the model, labelling with a reward model, and learning on feedback from the model's own outputs---is performant but not efficient. Following prior work in the generall deep RL setting, we propose separating the actor and learner in RLHF. This enables the asynchronously generation of new samples while learning on prior samples, thus leading to overall faster training and better scaling. But this requires a novel regime for RLHF, online but off-policy: learning on samples from a previous version of our model. We ask a fundamental question: how much off-policyness can we tolerate for asynchronous training to speed up learning but maintain performance? We find that a contrastive loss, Online DPO, is most robust to off-policy data and that robustness increases with the scale of the policy model. We show even further compute optimizations but demonstrate that they come at a performance cost, giving rise to a trade-off. Finally, we verify our design choices by training LLaMA 3.1 8B with RLHF as a helpful chatbot in half the time of a synchronous run while matching final performance.
Not All LLM Reasoners Are Created Equal
Arian Hosseini
Daniel Toyama
VinePPO: Accurate Credit Assignment in RL for LLM Mathematical Reasoning
Large language models (LLMs) are increasingly required to solve complex reasoning tasks, like mathematical problems, that involve multiple r… (see more)easoning steps before feedback is received. Effectively identifying and prioritizing key steps by accurately assigning credit to these intermediate steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm for finetuning LLMs, addresses the credit assignment problem by employing value networks to predict the expected cumulative rewards of intermediate states. In this work, we identify significant limitations with this value estimation method. To address this, we propose \methodname that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates of the intermediate values. VinePPO consistently outperforms standard PPO, doing so more efficiently and with lower divergence from the reference model. Our findings underscore the critical importance of accurate credit assignment in LLM post-training and present a simple, yet effective solution.
VinePPO: Accurate Credit Assignment in RL for LLM Mathematical Reasoning
Large language models (LLMs) are increasingly required to solve complex reasoning tasks, like mathematical problems, that involve multiple r… (see more)easoning steps before feedback is received. Effectively identifying and prioritizing key steps by accurately assigning credit to these intermediate steps is essential for enhancing model performance. Proximal Policy Optimization (PPO), a state-of-the-art reinforcement learning algorithm for finetuning LLMs, addresses the credit assignment problem by employing value networks to predict the expected cumulative rewards of intermediate states. In this work, we identify significant limitations with this value estimation method. To address this, we propose \methodname that leverages the flexibility of language environments to compute unbiased Monte Carlo-based estimates of the intermediate values. VinePPO consistently outperforms standard PPO, doing so more efficiently and with lower divergence from the reference model. Our findings underscore the critical importance of accurate credit assignment in LLM post-training and present a simple, yet effective solution.
Not All LLM Reasoners Are Created Equal
Arian Hosseini
Daniel Toyama
We study the depth of grade-school math (GSM) problem-solving capabilities of LLMs. To this end, we evaluate their performance on pairs of e… (see more)xisting math word problems together so that the answer to the second problem depends on correctly answering the first problem. Our findings reveal a significant reasoning gap in most LLMs, that is performance difference between solving the compositional pairs and solving each question independently. This gap is more pronounced in smaller, more cost-efficient, and math-specialized models. Moreover, instruction-tuning recipes and code generation have varying effects across LLM sizes, while finetuning on GSM can lead to task overfitting. Our analysis indicates that large reasoning gaps are not because of test-set leakage, but due to distraction from additional context and poor second-hop reasoning. Overall, LLMs exhibit systematic differences in their reasoning abilities, despite what their performance on standard benchmarks indicates.