Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
In this paper, we present Theano 1 , a framework in the Python programming language for defining, optimizing and evaluating expressions invo… (voir plus)lving high-level operations on tensors. Theano offers most of NumPy’s functionality, but adds automatic symbolic differentiation, GPU support, and faster expression evaluation. Theano is a general mathematical tool, but it was developed with the goal of facilitating research in deep learning. The Deep Learning Tutorials 2 introduce recent advances in deep learning, and showcase how Theano
A new stochastic decoding algorithm, called Delayed Stochastic (DS) decoding, is introduced to implement low-density-parity-check (LDPC) dec… (voir plus)oders. The delayed stochastic decoding uses an alternative method to track probability values, which results in reduction of hardware complexity and memory requirement of the stochastic decoders. It is therefore suitable for fully-parallel implementation of long LDPC codes with applications in optical communications. Two decoders are implemented using the DS algorithm for medium (2048, 1723) and long (32768, 26624) LDPC codes. The decoders occupy 3.93- mm2 and 56.5- mm2 silicon area using 90-nm CMOS technology and provide maximum core throughputs of 172.4 and 477.7 Gb/s at [(Eb)/(No)]=5.5 and 4.8 dB, respectively.
A new stochastic decoding algorithm, called Delayed Stochastic (DS) decoding, is introduced to implement low-density-parity-check (LDPC) dec… (voir plus)oders. The delayed stochastic decoding uses an alternative method to track probability values, which results in reduction of hardware complexity and memory requirement of the stochastic decoders. It is therefore suitable for fully-parallel implementation of long LDPC codes with applications in optical communications. Two decoders are implemented using the DS algorithm for medium (2048, 1723) and long (32768, 26624) LDPC codes. The decoders occupy 3.93- mm2 and 56.5- mm2 silicon area using 90-nm CMOS technology and provide maximum core throughputs of 172.4 and 477.7 Gb/s at [(Eb)/(No)]=5.5 and 4.8 dB, respectively.
Being one of the most efficient solutions to implement forward error correction (FEC) decoders based on belief propagation, stochastic proce… (voir plus)ssing is thus a method worthy of consideration when addressing the decoding of emerging codes such as Cortex codes. This code family offers short block codes with large Hamming distances. Unfortunately, their construction introduces many hidden variables making them difficult to be efficiently decoded with digital circuits implementing the Sum-Product algorithm. With the introduction of multiple stochastic streams, the proposed solution alleviates the hidden variables problem thus yielding decoding performances close to optimal. Morevover, this new stochastic architecture is more efficient in terms of complexity-throughput ratio compared to recently published stochastic decoders using either edge or tracking forecast memories.
Being one of the most efficient solutions to implement forward error correction (FEC) decoders based on belief propagation, stochastic proce… (voir plus)ssing is thus a method worthy of consideration when addressing the decoding of emerging codes such as Cortex codes. This code family offers short block codes with large Hamming distances. Unfortunately, their construction introduces many hidden variables making them difficult to be efficiently decoded with digital circuits implementing the Sum-Product algorithm. With the introduction of multiple stochastic streams, the proposed solution alleviates the hidden variables problem thus yielding decoding performances close to optimal. Morevover, this new stochastic architecture is more efficient in terms of complexity-throughput ratio compared to recently published stochastic decoders using either edge or tracking forecast memories.