Portrait de Gintare Karolina Dziugaite

Gintare Karolina Dziugaite

Membre industriel associé
Professeure associée, McGill University, École d'informatique
Chercheuse scientifique senior, Google DeepMind
Sujets de recherche
Apprentissage profond
Théorie de l'apprentissage automatique
Théorie de l'information

Biographie

Gintare Karolina Dziugaite est chercheuse scientifique senior chez Google DeepMind, à Toronto, et professeure associée à l'École d'informatique de l'Université McGill. Avant de se joindre à Google, elle a dirigé le programme Trustworthy AI chez Element AI / ServiceNow. Ses recherches combinent des approches théoriques et empiriques visant à comprendre l'apprentissage profond.

Gintare Karolina Dziugaite est bien connue pour ses travaux sur la rareté des réseaux et des données, le développement d'algorithmes et la découverte des effets sur la généralisation et d'autres mesures. Elle a été la première à étudier la connectivité des modes linéaires, en les reliant d'abord à l'existence des billets de loterie, puis aux paysages de pertes et au mécanisme d'élagage itératif de la magnitude. Ses recherches portent également sur la compréhension de la généralisation dans l'apprentissage profond et, plus généralement, sur le développement de méthodes fondées sur la théorie de l'information pour l'étude de la généralisation. Ses travaux les plus récents s’intéressent à l'élimination de l'influence des données sur le modèle (désapprentissage).

Mme Dziugaite a obtenu un doctorat en apprentissage automatique de l'Université de Cambridge, sous la direction de Zoubin Ghahramani. Elle a étudié les mathématiques à l'Université de Warwick et a suivi la partie III des mathématiques à l'Université de Cambridge, où elle a obtenu un Master of Advanced Studies (M.A.St.) en mathématiques. Elle a participé à plusieurs programmes de longue durée à l'Institute for Advanced Study de l’Université Princeton (New Jersey) et au Simons Institute for the Theory of Computing de l'Université de Berkeley.

Publications

Mechanistic Unlearning: Robust Knowledge Unlearning and Editing via Mechanistic Localization
Phillip Huang Guo
Aaquib Syed
Abhay Sheshadri
Aidan Ewart
The Non-Local Model Merging Problem: Permutation Symmetries and Variance Collapse
Ekansh Sharma
Daniel M. Roy
Unlearning in- vs. out-of-distribution data in LLMs under gradient-based methods
Teodora Baluta
Pascal Lamblin
Fabian Pedregosa
Danny Tarlow
Machine unlearning aims to solve the problem of removing the influence of selected training examples from a learned model. Despite the incre… (voir plus)asing attention to this problem, it remains an open research question how to evaluate unlearning in large language models (LLMs), and what are the critical properties of the data to be unlearned that affect the quality and efficiency of unlearning. This work formalizes a metric to evaluate unlearning quality in generative models, and uses it to assess the trade-offs between unlearning quality and performance. We demonstrate that unlearning out-of-distribution examples requires more unlearning steps but overall presents a better trade-off overall. For in-distribution examples, however, we observe a rapid decay in performance as unlearning progresses. We further evaluate how example's memorization and difficulty affect unlearning under a classical gradient ascent-based approach.
Linear Weight Interpolation Leads to Transient Performance Gains
Robust Knowledge Unlearning via Mechanistic Localizations
Phillip Huang Guo
Aaquib Syed
Abhay Sheshadri
Aidan Ewart
Mixture of Experts in a Mixture of RL settings
Timon Willi
Johan Samir Obando Ceron
Jakob Nicolaus Foerster
Mixtures of Experts (MoEs) have gained prominence in (self-)supervised learning due to their enhanced inference efficiency, adaptability to … (voir plus)distributed training, and modularity. Previous research has illustrated that MoEs can significantly boost Deep Reinforcement Learning (DRL) performance by expanding the network's parameter count while reducing dormant neurons, thereby enhancing the model's learning capacity and ability to deal with non-stationarity. In this work, we shed more light on MoEs' ability to deal with non-stationarity and investigate MoEs in DRL settings with"amplified"non-stationarity via multi-task training, providing further evidence that MoEs improve learning capacity. In contrast to previous work, our multi-task results allow us to better understand the underlying causes for the beneficial effect of MoE in DRL training, the impact of the various MoE components, and insights into how best to incorporate them in actor-critic-based DRL networks. Finally, we also confirm results from previous work.
Robust Unlearning via Mechanistic Localizations
Phillip Huang Guo
Aaquib Syed
Abhay Sheshadri
Aidan Ewart
Methods for machine unlearning in large language models seek to remove undesirable knowledge or capabilities without compromising general la… (voir plus)nguage modeling performance. This work investigates the use of mechanistic interpretability to improve the precision and effectiveness of unlearning. We demonstrate that localizing unlearning to components with particular mechanisms in factual recall leads to more robust unlearning across different input/output formats, relearning, and latent knowledge, and reduces unintended side effects compared to nonlocalized unlearning. Additionally, we analyze the strengths and weaknesses of different automated (rather than manual) interpretability methods for guiding unlearning, finding that their corresponding unlearned models require smaller edit sizes to achieve unlearning but are much less robust.
Linear Weight Interpolation Leads to Transient Performance Gains
Are we making progress in unlearning? Findings from the first NeurIPS unlearning competition
Eleni Triantafillou
Peter Kairouz
Fabian Pedregosa
Jamie Hayes
Meghdad Kurmanji
Kairan Zhao
Vincent Dumoulin
Julio C. S. Jacques Junior
Jun Wan
Lisheng Sun-Hosoya
Sergio Escalera
Peter Triantafillou
Isabelle Guyon
We present the findings of the first NeurIPS competition on unlearning, which sought to stimulate the development of novel algorithms and in… (voir plus)itiate discussions on formal and robust evaluation methodologies. The competition was highly successful: nearly 1,200 teams from across the world participated, and a wealth of novel, imaginative solutions with different characteristics were contributed. In this paper, we analyze top solutions and delve into discussions on benchmarking unlearning, which itself is a research problem. The evaluation methodology we developed for the competition measures forgetting quality according to a formal notion of unlearning, while incorporating model utility for a holistic evaluation. We analyze the effectiveness of different instantiations of this evaluation framework vis-a-vis the associated compute cost, and discuss implications for standardizing evaluation. We find that the ranking of leading methods remains stable under several variations of this framework, pointing to avenues for reducing the cost of evaluation. Overall, our findings indicate progress in unlearning, with top-performing competition entries surpassing existing algorithms under our evaluation framework. We analyze trade-offs made by different algorithms and strengths or weaknesses in terms of generalizability to new datasets, paving the way for advancing both benchmarking and algorithm development in this important area.
Data Selection for Transfer Unlearning
Nazanin Mohammadi Sepahvand
Vincent Dumoulin
Eleni Triantafillou
Unmasking Efficiency: Learning Salient Sparse Models in Non-IID Federated Learning
Riyasat Ohib
Bishal Thapaliya
Jingyu Liu 0001
Vince D. Calhoun
Sergey M. Plis
In this work, we propose Salient Sparse Federated Learning (SSFL), a streamlined approach for sparse federated learning with efficient commu… (voir plus)nication. SSFL identifies a sparse subnetwork prior to training, leveraging parameter saliency scores computed separately on local client data in non-IID scenarios, and then aggregated, to determine a global mask. Only the sparse model weights are communicated each round between the clients and the server. We validate SSFL's effectiveness using standard non-IID benchmarks, noting marked improvements in the sparsity--accuracy trade-offs. Finally, we deploy our method in a real-world federated learning framework and report improvement in communication time.
Information Complexity of Stochastic Convex Optimization: Applications to Generalization and Memorization
Idan Attias
MAHDI HAGHIFAM
Roi Livni
Daniel M. Roy
In this work, we investigate the interplay between memorization and learning in the context of \emph{stochastic convex optimization} (SCO). … (voir plus)We define memorization via the information a learning algorithm reveals about its training data points. We then quantify this information using the framework of conditional mutual information (CMI) proposed by Steinke and Zakynthinou (2020). Our main result is a precise characterization of the tradeoff between the accuracy of a learning algorithm and its CMI, answering an open question posed by Livni (2023). We show that, in the