Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Zahra Sheikhbahaee
Alumni
Publications
Proceedings of 1st Workshop on Advancing Artificial Intelligence through Theory of Mind
Learning transferable representations for deep reinforcement learning (RL) is a challenging problem due to the inherent non-stationarity, di… (voir plus)stribution shift, and unstable training dynamics. To be useful, a transferable representation needs to be robust to such factors. In this work, we introduce a new architecture and training strategy for learning robust representations for transfer learning in RL. We propose leveraging multiple CNN encoders and training them not to specialize in areas of the state space but instead to match each other's representation. We find that learned representations transfer well across many Atari tasks, resulting in better transfer learning performance and data efficiency than training from scratch.
From physics to sentience: Deciphering the semantics of the free-energy principle and evaluating its claims: Comment on "Path integrals, particular kinds, and strange things" by Karl Friston et al.
From physics to sentience: Deciphering the semantics of the free-energy principle and evaluating its claims: Comment on "Path integrals, particular kinds, and strange things" by Karl Friston et al.
Attention has become a common ingredient in deep learning architectures. It adds a dynamical selection of information on top of the static s… (voir plus)election of information supported by weights. In the same way, we can imagine a higher-order informational filter built on top of attention: an Attention Schema (AS), namely, a descriptive and predictive model of attention. In cognitive neuroscience, Attention Schema Theory (AST) supports this idea of distinguishing attention from AS. A strong prediction of this theory is that an agent can use its own AS to also infer the states of other agents' attention and consequently enhance coordination with other agents. As such, multi-agent reinforcement learning would be an ideal setting to experimentally test the validity of AST. We explore different ways in which attention and AS interact with each other. Our preliminary results indicate that agents that implement the AS as a recurrent internal control achieve the best performance. In general, these exploratory experiments suggest that equipping artificial agents with a model of attention can enhance their social intelligence.