Rejoignez-nous le 19 novembre pour la troisième édition du concours de vulgarisation scientifique de Mila, où les étudiant·e·s présenteront leurs recherches complexes en trois minutes devant un jury.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Lecteur Multimédia
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
In this blogpost we discuss the idea of teaching neural networks to reach fixed points when reasoning. Specifically, on the algorithmic reas… (voir plus)oning benchmark CLRS the current neural networks are told the number of reasoning steps they need. While a quick fix is to add a termination network that predicts when to stop, a much more salient inductive bias is that the neural network shouldn't change it's answer any further once the answer is correct, i.e. it should reach a fixed point. This is supported by denotational semantics, which tells us that while loops that terminate are the minimum fixed points of a function. We implement this idea with the help of deep equilibrium models and discuss several hurdles one encounters along the way. We show on several algorithms from the CLRS benchmark the partial success of this approach and the difficulty in making it work robustly across all algorithms.
In this blogpost we discuss the idea of teaching neural networks to reach fixed points when reasoning. Specifically, on the algorithmic reas… (voir plus)oning benchmark CLRS the current neural networks are told the number of reasoning steps they need. While a quick fix is to add a termination network that predicts when to stop, a much more salient inductive bias is that the neural network shouldn't change it's answer any further once the answer is correct, i.e. it should reach a fixed point. This is supported by denotational semantics, which tells us that while loops that terminate are the minimum fixed points of a function. We implement this idea with the help of deep equilibrium models and discuss several hurdles one encounters along the way. We show on several algorithms from the CLRS benchmark the partial success of this approach and the difficulty in making it work robustly across all algorithms.