Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Mohammad Amini
Alumni
Publications
Staged independent learning: Towards decentralized cooperative multi-agent Reinforcement Learning
We empirically show that classic ideas from two-time scale stochastic approximation \citep{borkar1997stochastic} can be combined with sequen… (voir plus)tial iterative best response (SIBR) to solve complex cooperative multi-agent reinforcement learning (MARL) problems. We first start with giving a multi-agent estimation problem as a motivating example where SIBR converges while parallel iterative best response (PIBR) does not. Then we present a general implementation of staged multi-agent RL algorithms based on SIBR and multi-time scale stochastic approximation, and show that our new methods which we call Staged Independent Proximal Policy Optimization (SIPPO) and Staged Independent Q-learning (SIQL) outperform state-of-the-art independent learning on almost all the tasks in the epymarl \citep{papoudakis2020benchmarking} benchmark. This can be seen as a first step towards more decentralized MARL methods based on SIBR and multi-time scale learning.