Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Lily Puterman-salzman
Alumni
Publications
Artificial Intelligence for Detection of Dementia Using Motion Data: A Scoping Review
Background: Dementia is a neurodegenerative disease resulting in the loss of cognitive and psychological functions. Artificial intelligence … (voir plus)(AI) may help in detection and screening of dementia; however, little is known in this area. Objectives: The objective of this study was to identify and evaluate AI interventions for detection of dementia using motion data. Method: The review followed the framework proposed by O’Malley’s and Joanna Briggs Institute methodological guidance for scoping reviews. We adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) checklist for reporting the results. An information specialist performed a comprehensive search from the date of inception until November 2020, in five bibliographic databases: MEDLINE, EMBASE, Web of Science Core Collection, CINAHL, and IEEE Xplore. We included studies aimed at the deployment and testing or implementation of AI interventions using motion data for the detection of dementia among a diverse population, encompassing varying age, sex, gender, economic backgrounds, and ethnicity, extending to their health care providers across multiple health care settings. Studies were excluded if they focused on Parkinson’s or Huntington’s disease. Two independent reviewers screened the abstracts, titles, and then read the full-texts. Disagreements were resolved by consensus, and if this was not possible, the opinion of a third reviewer was sought. The reference lists of included studies were also screened. Results: After removing duplicates, 2,632 articles were obtained. After title and abstract screening and full-text screening, 839 articles were considered for categorization. The authors categorized the papers into six categories, and data extraction and synthesis was performed on 20 included papers from the motion tracking data category. The included studies assessed cognitive performance (n = 5, 25%); screened dementia and cognitive decline (n = 8, 40%); investigated visual behaviours (n = 4, 20%); and analyzed motor behaviors (n = 3, 15%). Conclusions: We presented evidence of AI systems being employed in the detection of dementia, showcasing the promising potential of motion tracking within this domain. Although some progress has been made in this field recently, there remain notable research gaps that require further exploration and investigation. Future endeavors need to compare AI interventions using motion data with traditional screening methods or other tech-enabled dementia detection mechanisms. Besides, future works should aim at understanding how gender and sex, and ethnic and cultural sensitivity can contribute to refining AI interventions, ensuring they are accessible, equitable, and beneficial across all society.
2023-09-13
Dementia and Geriatric Cognitive Disorders EXTRA (publié)