Mila organise son premier hackathon en informatique quantique le 21 novembre. Une journée unique pour explorer le prototypage quantique et l’IA, collaborer sur les plateformes de Quandela et IBM, et apprendre, échanger et réseauter dans un environnement stimulant au cœur de l’écosystème québécois en IA et en quantique.
Une nouvelle initiative pour renforcer les liens entre la communauté de recherche, les partenaires et les expert·e·s en IA à travers le Québec et le Canada, grâce à des rencontres et événements en présentiel axés sur l’adoption de l’IA dans l’industrie.
Nous utilisons des témoins pour analyser le trafic et l’utilisation de notre site web, afin de personnaliser votre expérience. Vous pouvez désactiver ces technologies à tout moment, mais cela peut restreindre certaines fonctionnalités du site. Consultez notre Politique de protection de la vie privée pour en savoir plus.
Paramètre des cookies
Vous pouvez activer et désactiver les types de cookies que vous souhaitez accepter. Cependant certains choix que vous ferez pourraient affecter les services proposés sur nos sites (ex : suggestions, annonces personnalisées, etc.).
Cookies essentiels
Ces cookies sont nécessaires au fonctionnement du site et ne peuvent être désactivés. (Toujours actif)
Cookies analyse
Acceptez-vous l'utilisation de cookies pour mesurer l'audience de nos sites ?
Multimedia Player
Acceptez-vous l'utilisation de cookies pour afficher et vous permettre de regarder les contenus vidéo hébergés par nos partenaires (YouTube, etc.) ?
Afaf Taïk
Membre académique associé
Professeur adjoint, Université de Sherbrooke, Département de génie électrique et informatique
Federated learning (FL), which is a decentralized machine learning (ML) approach, often incorporates differential privacy (DP) to provide ri… (voir plus)gorous data privacy guarantees to clients. Previous works attempted to address high structured data heterogeneity in vanilla FL settings through clustering clients (a.k.a clustered FL), but these methods remain sensitive and prone to errors, further exacerbated by the DP noise. This vulnerability makes the previous methods inappropriate for differentially private FL (DPFL) under structured data heterogeneity. To address this gap, we propose an algorithm for differentially private clustered FL, which is robust to the DP noise in the system and identifies the underlying clients’ clusters correctly. To this end, we propose to cluster clients based on both their model updates and training loss values. Furthermore, for clustering clients’ model updates at the end of the first round, our proposed approach addresses the server’s uncertainties by employing large batch sizes as well as Gaussian Mixture Models (GMM) to reduce the impact of DP and stochastic noise and avoid potential clustering errors. We provide theoretical analysis to justify our approach and evaluate it across diverse data distributions and privacy budgets. Our experimental results show the approach’s effectiveness in addressing high structured data heterogeneity in DPFL.
Large language models (LLMs) are increasingly used as alternatives to traditional search engines given their capacity to generate text that … (voir plus)resembles human language. However, this shift is concerning, as LLMs often generate hallucinations, misleading or false information that appears highly credible. In this study, we explore the phenomenon of hallucinations across multiple languages in freeform text generation, focusing on what we call multilingual hallucination gaps. These gaps reflect differences in the frequency of hallucinated answers depending on the prompt and language used. To quantify such hallucinations, we used the FactScore metric and extended its framework to a multilingual setting. We conducted experiments using LLMs from the LLaMA, Qwen, and Aya families, generating biographies in 19 languages and comparing the results to Wikipedia pages. Our results reveal variations in hallucination rates, especially between high and low resource languages, raising important questions about LLM multilingual performance and the challenges in evaluating hallucinations in multilingual freeform text generation.
Large language models (LLMs) are increasingly used as alternatives to traditional search engines given their capacity to generate text that … (voir plus)resembles human language. However, this shift is concerning, as LLMs often generate hallucinations, misleading or false information that appears highly credible. In this study, we explore the phenomenon of hallucinations across multiple languages in freeform text generation, focusing on what we call multilingual hallucination gaps. These gaps reflect differences in the frequency of hallucinated answers depending on the prompt and language used. To quantify such hallucinations, we used the FactScore metric and extended its framework to a multilingual setting. We conducted experiments using LLMs from the LLaMA, Qwen, and Aya families, generating biographies in 19 languages and comparing the results to Wikipedia pages. Our results reveal variations in hallucination rates, especially between high and low resource languages, raising important questions about LLM multilingual performance and the challenges in evaluating hallucinations in multilingual freeform text generation.
Large language models (LLMs) are increasingly used as alternatives to traditional search engines given their capacity to generate text that … (voir plus)resembles human language. However, this shift is concerning, as LLMs often generate hallucinations, misleading or false information that appears highly credible. In this study, we explore the phenomenon of hallucinations across multiple languages in freeform text generation, focusing on what we call multilingual hallucination gaps. These gaps reflect differences in the frequency of hallucinated answers depending on the prompt and language used. To quantify such hallucinations, we used the FactScore metric and extended its framework to a multilingual setting. We conducted experiments using LLMs from the LLaMA, Qwen, and Aya families, generating biographies in 19 languages and comparing the results to Wikipedia pages. Our results reveal variations in hallucination rates, especially between high and low resource languages, raising important questions about LLM multilingual performance and the challenges in evaluating hallucinations in multilingual freeform text generation.
Federated learning (FL), which is a decentralized machine learning (ML) approach, often incorporates differential privacy (DP) to provide ri… (voir plus)gorous data privacy guarantees. Previous works attempted to address high structured data heterogeneity in vanilla FL settings through clustering clients (a.k.a clustered FL), but these methods remain sensitive and prone to errors, further exacerbated by the DP noise. This vulnerability makes the previous methods inappropriate for differentially private FL (DPFL) settings with structured data heterogeneity. To address this gap, we propose an algorithm for differentially private clustered FL, which is robust to the DP noise in the system and identifies the underlying clients' clusters correctly. To this end, we propose to cluster clients based on both their model updates and training loss values. Furthermore, for clustering clients' model updates at the end of the first round, our proposed approach addresses the server's uncertainties by employing large batch sizes as well as Gaussian Mixture Models (GMM) to reduce the impact of DP and stochastic noise and avoid potential clustering errors. This idea is efficient especially in privacy-sensitive scenarios with more DP noise. We provide theoretical analysis to justify our approach and evaluate it across diverse data distributions and privacy budgets. Our experimental results show its effectiveness in addressing large structured data heterogeneity in DPFL.
Federated Learning (FL) is a decentralized machine learning (ML) approach that keeps data localized and often incorporates Differential Priv… (voir plus)acy (DP) to enhance privacy guarantees. Similar to previous work on DP in ML, we observed that differentially private federated learning (DPFL) introduces performance disparities, particularly affecting minority groups. Recent work has attempted to address performance fairness in vanilla FL through clustering, but this method remains sensitive and prone to errors, which are further exacerbated by the DP noise in DPFL. To fill this gap, in this paper, we propose a novel clustered DPFL algorithm designed to effectively identify clients' clusters in highly heterogeneous settings while maintaining high accuracy with DP guarantees. To this end, we propose to cluster clients based on both their model updates and training loss values. Our proposed approach also addresses the server's uncertainties in clustering clients' model updates by employing larger batch sizes along with Gaussian Mixture Model (GMM) to alleviate the impact of noise and potential clustering errors, especially in privacy-sensitive scenarios. We provide theoretical analysis of the effectiveness of our proposed approach. We also extensively evaluate our approach across diverse data distributions and privacy budgets and show its effectiveness in mitigating the disparate impact of DP in FL settings with a small computational cost.
The use of dynamic pricing by profit-maximizing firms gives rise to demand fairness concerns, measured by discrepancies in consumer groups' … (voir plus)demand responses to a given pricing strategy. Notably, dynamic pricing may result in buyer distributions unreflective of those of the underlying population, which can be problematic in markets where fair representation is socially desirable. To address this, policy makers might leverage tools such as taxation and subsidy to adapt policy mechanisms dependent upon their social objective. In this paper, we explore the potential for AI methods to assist such intervention strategies. To this end, we design a basic simulated economy, wherein we introduce a dynamic social planner (SP) to generate corporate taxation schedules geared to incentivizing firms towards adopting fair pricing behaviours, and to use the collected tax budget to subsidize consumption among underrepresented groups. To cover a range of possible policy scenarios, we formulate our social planner's learning problem as a multi-armed bandit, a contextual bandit and finally as a full reinforcement learning (RL) problem, evaluating welfare outcomes from each case. To alleviate the difficulty in retaining meaningful tax rates that apply to less frequently occurring brackets, we introduce FairReplayBuffer, which ensures that our RL agent samples experiences uniformly across a discretized fairness space. We find that, upon deploying a learned tax and redistribution policy, social welfare improves on that of the fairness-agnostic baseline, and approaches that of the analytically optimal fairness-aware baseline for the multi-armed and contextual bandit settings, and surpassing it by 13.19% in the full RL setting.
The aftermath of the Covid-19 pandemic saw more severe outcomes for racial minority groups and economically-deprived communities. Such dispa… (voir plus)rities can be explained by several factors, including unequal access to healthcare, as well as the inability of low income groups to reduce their mobility due to work or social obligations. Moreover, senior citizens were found to be more susceptible to severe symptoms, largely due to age-related health reasons. Adapting vaccine distribution strategies to consider a range of demographics is therefore essential to address these disparities. In this study, we propose a novel approach that utilizes influence maximization (IM) on mobility networks to develop vaccination strategies which incorporate demographic fairness. By considering factors such as race, social status, age, and associated risk factors, we aim to optimize vaccine distribution to achieve various fairness definitions for one or more protected attributes at a time. Through extensive experiments conducted on Covid-19 spread in three major metropolitan areas across the United States, we demonstrate the effectiveness of our proposed approach in reducing disease transmission and promoting fairness in vaccination distribution.
2024-03-24
Proceedings of the AAAI Conference on Artificial Intelligence (publié)