Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
System tracing has become essential for understanding complex software behavior in modern systems, yet sophisticated trace analysis tools fa… (see more)ce significant adoption gaps in industrial settings. Through a year-long collaboration with Ericsson Montr\'eal, developing TMLL (Trace-Server Machine Learning Library, now in the Eclipse Foundation), we investigated barriers to trace analysis adoption. Contrary to assumptions about complexity or automation needs, practitioners struggled with translating expert knowledge into actionable insights, integrating analysis into their workflows, and trusting automated results they could not validate. We identified what we called the Excellence Paradox: technical excellence can actively impede adoption when conflicting with usability, transparency, and practitioner trust. TMLL addresses this through adoption-focused design that embeds expert knowledge in interfaces, provides transparent explanations, and enables incremental adoption. Validation through Ericsson's experts'feedback, Eclipse Foundation's integration, and a survey of 40 industry and academic professionals revealed consistent patterns: survey results showed that 77.5% prioritize quality and trust in results over technical sophistication, while 67.5% prefer semi-automated analysis with user control, findings supported by qualitative feedback from industrial collaboration and external peer review. Results validate three core principles: cognitive compatibility, embedded expertise, and transparency-based trust. This challenges conventional capability-focused tool development, demonstrating that sustainable adoption requires reorientation toward adoption-focused design with actionable implications for automated software engineering tools.
Idiopathic pulmonary fibrosis (IPF) is a progressive and lethal disease characterized by excessive extracellular matrix deposition. Current … (see more)IPF therapies slow disease progression but do not stop or reverse it. The (myo)fibroblasts are thought to be the main cellular contributors to excessive extracellular matrix production in IPF. Here we show that fibrotic alveolar type II cells regulate production and crosslinking of extracellular matrix via the co-transcriptional activator YAP. YAP leads to increased expression of Lysl oxidase (LOX) and subsequent LOX-mediated crosslinking by fibrotic alveolar type II cells. Pharmacological YAP inhibition via verteporfin reverses fibrotic alveolar type II cell reprogramming and LOX expression in experimental lung fibrosis in vivo and in human fibrotic tissue ex vivo. We thus identify YAP-TEAD/LOX inhibition in alveolar type II cells as a promising potential therapy for IPF patients.
In Kidney Exchange Programs (KEPs), each participating patient is registered together with an incompatible donor. Donors without an incompat… (see more)ible patient can also register. Then, KEPs typically maximize overall patient benefit through donor exchanges. This aggregation of benefits calls into question potential individual patient disparities in terms of access to transplantation in KEPs. Considering solely this utilitarian objective may become an issue in the case where multiple exchange plans are optimal or near-optimal. In fact, current KEP policies are all-or-nothing, meaning that only one exchange plan is determined. Each patient is either selected or not as part of that unique solution. In this work, we seek instead to find a policy that contemplates the probability of patients of being in a solution. To guide the determination of our policy, we adapt popular fairness schemes to KEPs to balance the usual approach of maximizing the utilitarian objective. Different combinations of fairness and utilitarian objectives are modelled as conic programs with an exponential number of variables. We propose a column generation approach to solve them effectively in practice. Finally, we make an extensive comparison of the different schemes in terms of the balance of utility and fairness score, and validate the scalability of our methodology for benchmark instances from the literature.
2025-08-01
European Journal of Operational Research (published)
Inverter-based resources (IBRs) can cause instability in weak AC grids. While supplementary damping controllers (SDCs) effectively mitigate … (see more)this instability, they are typically designed for specific resonance frequencies but struggle with large shifts caused by changing grid conditions. This paper proposes a deep reinforcement learning-based agent (DRL Agent) as an adaptive SDC to handle shifted resonance frequencies. To address the time-consuming nature of training DRL Agents in electromagnetic transient (EMT) simulations, we coordinate fast root mean square (RMS) and EMT simulations. Resonance frequencies of the weak grid instability are accurately reproduced by RMS simulations to support the training process. The DRL Agent’s efficacy is tested in unseen scenarios outside the training dataset. We then iteratively improve the DRL Agent’s performance by modifying the reward function and hyper-parameters.
Inverter-based resources (IBRs) can cause instability in weak AC grids. While supplementary damping controllers (SDCs) effectively mitigate … (see more)this instability, they are typically designed for specific resonance frequencies but struggle with large shifts caused by changing grid conditions. This paper proposes a deep reinforcement learning-based agent (DRL Agent) as an adaptive SDC to handle shifted resonance frequencies. To address the time-consuming nature of training DRL Agents in electromagnetic transient (EMT) simulations, we coordinate fast root mean square (RMS) and EMT simulations. Resonance frequencies of the weak grid instability are accurately reproduced by RMS simulations to support the training process. The DRL Agent’s efficacy is tested in unseen scenarios outside the training dataset. We then iteratively improve the DRL Agent’s performance by modifying the reward function and hyper-parameters.
We explore three strategies to enhance performance on a wide range of image editing tasks: supervised fine-tuning (SFT), reinforcement learn… (see more)ing (RL), and Chain-of-Thought (CoT) reasoning. In order to study all these components in one consistent framework, we adopt an autoregressive multimodal model that processes textual and visual tokens in a unified manner. We find RL combined with a large multi-modal LLM verifier to be the most effective of these strategies. As a result, we release EARL: Editing with Autoregression and RL, a strong RL-based image editing model that performs competitively on a diverse range of edits compared to strong baselines, despite using much less training data. Thus, EARL pushes the frontier of autoregressive multimodal models on image editing. We release our code, training data, and trained models at https://github.com/mair-lab/EARL.
Zero-shot anomaly detection (ZSAD) enables identifying and localizing defects in unseen categories by relying solely on generalizable featur… (see more)es rather than requiring any labeled examples of anomalies. However, existing ZSAD methods, whether using fixed or learned prompts, struggle under domain shifts because their training data are derived from limited training domains and fail to generalize to new distributions. In this paper, we introduce PILOT, a framework designed to overcome these challenges through two key innovations: (1) a novel dual-branch prompt learning mechanism that dynamically integrates a pool of learnable prompts with structured semantic attributes, enabling the model to adaptively weight the most relevant anomaly cues for each input image; and (2) a label-free test-time adaptation strategy that updates the learnable prompt parameters using high-confidence pseudo-labels from unlabeled test data. Extensive experiments on 13 industrial and medical benchmarks demonstrate that PILOT achieves state-of-the-art performance in both anomaly detection and localization under domain shift.