Portrait of Saba Ahmadi is unavailable

Saba Ahmadi

Collaborating researcher - Université de Montréal
Supervisor
Research Topics
Computer Vision
Generative Models
Multimodal Learning

Publications

The Promise of RL for Autoregressive Image Editing
Amirhossein Kazemnejad
Ge Ya Luo
Juan A. Rodriguez
Sai Rajeswar
We explore three strategies to enhance performance on a wide range of image editing tasks: supervised fine-tuning (SFT), reinforcement learn… (see more)ing (RL), and Chain-of-Thought (CoT) reasoning. In order to study all these components in one consistent framework, we adopt an autoregressive multimodal model that processes textual and visual tokens in a unified manner. We find RL combined with a large multi-modal LLM verifier to be the most effective of these strategies. As a result, we release EARL: Editing with Autoregression and RL, a strong RL-based image editing model that performs competitively on a diverse range of edits compared to strong baselines, despite using much less training data. Thus, EARL pushes the frontier of autoregressive multimodal models on image editing. We release our code, training data, and trained models at https://github.com/mair-lab/EARL.
VisMin: Visual Minimal-Change Understanding
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). To evalua… (see more)te VLMs' fine-grained understanding, existing benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar captions given an image. In this paper, our focus is on evaluating VLMs' capability to distinguish between two very similar images given a caption. To this end, we introduce a new, challenging benchmark termed Visual Minimal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. Importantly, the image pair (as well as the caption pair) contains minimal changes, i.e., between the two images (as well as between the two captions), only one aspect changes at a time from among the following possible types of changes: object, attribute, count, and spatial relation. These four types of minimal changes are specifically designed to test the models' understanding of objects, attributes of objects (such as color, material, shape), counts of objects, and spatial relationships between objects. To curate our benchmark, we built an automatic pipeline using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. Furthermore, leveraging the automated nature of our data creation process, we generate a large-scale training dataset, which we use to finetune CLIP (a foundational VLM) and Idefics2 (a multimodal large language model). Our findings show that both these models benefit significantly from fine-tuning on this data, as evident by marked improvements in fine-grained understanding across a wide range of benchmarks. Additionally, such fine-tuning improves CLIP's general image-text alignment capabilities too. All resources including the benchmark, the training data, and the finetuned model checkpoints will be released.
VisMin: Visual Minimal-Change Understanding
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). Existing … (see more)benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar \textit{captions} given an image. In this paper, we introduce a new, challenging benchmark termed \textbf{Vis}ual \textbf{Min}imal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. The image pair and caption pair contain minimal changes, i.e., only one aspect changes at a time from among the following: \textit{object}, \textit{attribute}, \textit{count}, and \textit{spatial relation}. These changes test the models' understanding of objects, attributes (such as color, material, shape), counts, and spatial relationships between objects. We built an automatic framework using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. We also generate a large-scale training dataset to finetune CLIP and Idefics2, showing significant improvements in fine-grained understanding across benchmarks and in CLIP's general image-text alignment. We release all resources, including the benchmark, training data, and finetuned model checkpoints, at https://vismin.net/.
VisMin: Visual Minimal-Change Understanding
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). Existing … (see more)benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar captions given an image. In this paper, we introduce a new, challenging benchmark termed Visual Minimal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. The image pair and caption pair contain minimal changes, i.e., only one aspect changes at a time from among the following: object, attribute, count, and spatial relation. These changes test the models' understanding of objects, attributes (such as color, material, shape), counts, and spatial relationships between objects. We built an automatic framework using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. We also generate a large-scale training dataset to finetune CLIP and Idefics2, showing significant improvements in fine-grained understanding across benchmarks and in CLIP's general image-text alignment. We release all resources, including the benchmark, training data, and finetuned model checkpoints, at https://vismin.net/.
VisMin: Visual Minimal-Change Understanding
Fine-grained understanding of objects, attributes, and relationships between objects is crucial for visual-language models (VLMs). Existing … (see more)benchmarks primarily focus on evaluating VLMs' capability to distinguish between two very similar \textit{captions} given an image. In this paper, we introduce a new, challenging benchmark termed \textbf{Vis}ual \textbf{Min}imal-Change Understanding (VisMin), which requires models to predict the correct image-caption match given two images and two captions. The image pair and caption pair contain minimal changes, i.e., only one aspect changes at a time from among the following: \textit{object}, \textit{attribute}, \textit{count}, and \textit{spatial relation}. These changes test the models' understanding of objects, attributes (such as color, material, shape), counts, and spatial relationships between objects. We built an automatic framework using large language models and diffusion models, followed by a rigorous 4-step verification process by human annotators. Empirical experiments reveal that current VLMs exhibit notable deficiencies in understanding spatial relationships and counting abilities. We also generate a large-scale training dataset to finetune CLIP and Idefics2, showing significant improvements in fine-grained understanding across benchmarks and in CLIP's general image-text alignment. We release all resources, including the benchmark, training data, and finetuned model checkpoints, at https://vismin.net/.
An Examination of the Robustness of Reference-Free Image Captioning Evaluation Metrics
MAPL: Parameter-Efficient Adaptation of Unimodal Pre-Trained Models for Vision-Language Few-Shot Prompting
Pau Rodriguez
Aida Nematzadeh
Large pre-trained models have proved to be remarkable zero- and (prompt-based) few-shot learners in unimodal vision and language tasks. We p… (see more)ropose MAPL, a simple and parameter-efficient method that reuses frozen pre-trained unimodal models and leverages their strong generalization capabilities in multimodal vision-language (VL) settings. MAPL learns a lightweight mapping between the representation spaces of unimodal models using aligned image-text data, and can generalize to unseen VL tasks from just a few in-context examples. The small number of trainable parameters makes MAPL effective at low-data and in-domain learning. Moreover, MAPL’s modularity enables easy extension to other pre-trained models. Extensive experiments on several visual question answering and image captioning benchmarks show that MAPL achieves superior or competitive performance compared to similar methods while training orders of magnitude fewer parameters. MAPL can be trained in just a few hours using modest computational resources and public datasets. We release our code and pre-trained model weights at https://github.com/oscmansan/mapl.