Improved Localized Machine Unlearning Through the Lens of Memorization
Reihaneh Torkzadehmahani
Reza Nasirigerdeh
Georgios Kaissis
Daniel Rueckert
Eleni Triantafillou
Machine unlearning refers to removing the influence of a specified subset of training data from a machine learning model, efficiently, after… (see more) it has already been trained. This is important for key applications, including making the model more accurate by removing outdated, mislabeled, or poisoned data. In this work, we study localized unlearning, where the unlearning algorithm operates on a (small) identified subset of parameters. Drawing inspiration from the memorization literature, we propose an improved localization strategy that yields strong results when paired with existing unlearning algorithms. We also propose a new unlearning algorithm, Deletion by Example Localization (DEL), that resets the parameters deemed-to-be most critical according to our localization strategy, and then finetunes them. Our extensive experiments on different datasets, forget sets and metrics reveal that DEL sets a new state-of-the-art for unlearning metrics, against both localized and full-parameter methods, while modifying a small subset of parameters, and outperforms the state-of-the-art localized unlearning in terms of test accuracy too.
Improving Text-to-Image Consistency via Automatic Prompt Optimization
Oscar Mañas
Pietro Astolfi
Melissa Hall
Candace Ross
Jack Urbanek
Adina Williams
Michal Drozdzal
MiRGraph: A hybrid deep learning approach to identify microRNA-target interactions by integrating heterogeneous regulatory network and genomic sequences
Pei Liu
Ying Liu
Jiawei Luo
Insect Identification in the Wild: The AMI Dataset
Aditya Jain
Fagner Cunha
M. J. Bunsen
Juan Sebastián Cañas
L. Pasi
N. Pinoy
Flemming Helsing
JoAnne Russo
Marc Botham
Michael Sabourin
Jonathan Fréchette
Alexandre Anctil
Yacksecari Lopez
Eduardo Navarro
Filonila Perez Pimentel
Ana Cecilia Zamora
José Alejandro Ramirez Silva
Jonathan Gagnon
Tom August
K. Bjerge … (see 8 more)
Alba Gomez Segura
Marc Bélisle
Yves Basset
K. P. McFarland
David Roy
Toke Thomas Høye
Maxim Larrivée
Insects represent half of all global biodiversity, yet many of the world's insects are disappearing, with severe implications for ecosystems… (see more) and agriculture. Despite this crisis, data on insect diversity and abundance remain woefully inadequate, due to the scarcity of human experts and the lack of scalable tools for monitoring. Ecologists have started to adopt camera traps to record and study insects, and have proposed computer vision algorithms as an answer for scalable data processing. However, insect monitoring in the wild poses unique challenges that have not yet been addressed within computer vision, including the combination of long-tailed data, extremely similar classes, and significant distribution shifts. We provide the first large-scale machine learning benchmarks for fine-grained insect recognition, designed to match real-world tasks faced by ecologists. Our contributions include a curated dataset of images from citizen science platforms and museums, and an expert-annotated dataset drawn from automated camera traps across multiple continents, designed to test out-of-distribution generalization under field conditions. We train and evaluate a variety of baseline algorithms and introduce a combination of data augmentation techniques that enhance generalization across geographies and hardware setups.
ProGRes: Prompted Generative Rescoring on ASR n-Best
Ada Defne Tur
Adel Moumen
The Landscape of Causal Discovery Data: Grounding Causal Discovery in Real-World Applications
Philippe Brouillard
Chandler Squires
Jonas Wahl
Konrad P. Kording
Karen Sachs
Causal discovery aims to automatically uncover causal relationships from data, a capability with significant potential across many scientifi… (see more)c disciplines. However, its real-world applications remain limited. Current methods often rely on unrealistic assumptions and are evaluated only on simple synthetic toy datasets, often with inadequate evaluation metrics. In this paper, we substantiate these claims by performing a systematic review of the recent causal discovery literature. We present applications in biology, neuroscience, and Earth sciences - fields where causal discovery holds promise for addressing key challenges. We highlight available simulated and real-world datasets from these domains and discuss common assumption violations that have spurred the development of new methods. Our goal is to encourage the community to adopt better evaluation practices by utilizing realistic datasets and more adequate metrics.
The Landscape of Causal Discovery Data: Grounding Causal Discovery in Real-World Applications
Philippe Brouillard
Chandler Squires
Jonas Wahl
Konrad P. Kording
Karen Sachs
Causal discovery aims to automatically uncover causal relationships from data, a capability with significant potential across many scientifi… (see more)c disciplines. However, its real-world applications remain limited. Current methods often rely on unrealistic assumptions and are evaluated only on simple synthetic toy datasets, often with inadequate evaluation metrics. In this paper, we substantiate these claims by performing a systematic review of the recent causal discovery literature. We present applications in biology, neuroscience, and Earth sciences - fields where causal discovery holds promise for addressing key challenges. We highlight available simulated and real-world datasets from these domains and discuss common assumption violations that have spurred the development of new methods. Our goal is to encourage the community to adopt better evaluation practices by utilizing realistic datasets and more adequate metrics.
Combining supervised learning and local search for the multicommodity capacitated fixed-charge network design problem
Charly Robinson La Rocca
Jean-François Cordeau
The multicommodity capacitated fixed-charge network design problem has been extensively studied in the literature due to its wide range of a… (see more)pplications. Despite the fact that many sophisticated solution methods exist today, finding high-quality solutions to large-scale instances remains challenging. In this paper, we explore how a data-driven approach can help improve upon the state of the art. By leveraging machine learning models, we attempt to reveal patterns hidden in the data that might be difficult to capture with traditional optimization methods. For scalability, we propose a prediction method where the machine learning model is called at the level of each arc of the graph. We take advantage of off-the-shelf models trained via supervised learning to predict near-optimal solutions. Our experimental results include an algorithm design analysis that compares various integration strategies of predictions within local search algorithms. We benchmark the ML-based approach with respect to the state-of-the-art heuristic for this problem. The findings indicate that our method can outperform the leading heuristic on sets of instances sampled from a uniform distribution.
Decomposing the Brain in Autism: Linking Behavioral Domains to Neuroanatomical Variation and Genomic Underpinnings.
Hanna Seelemeyer
Caroline Gurr
Johanna Leyhausen
Lisa M. Berg
Charlotte M. Pretzsch
Tim Schäfer
Bassem Hermila
Christine M. Freitag
Eva Loth
Beth Oakley
Luke Mason
Jan K. Buitelaar
Christian Beckmann
Dorothea L. Floris
Tony Charman
Tobias Banaschewski
Emily Jones
Thomas Bourgeron
Jumana Ahmad
Sara Ambrosino … (see 58 more)
Bonnie Auyeung
Simon Baron-Cohen
Sarah Baumeister
Sven Bölte
Carsten Bours
Michael Brammer
Daniel Brandeis
Claudia Brogna
Yvette de Bruijn
Bhismadev Chakrabarti
Ineke Cornelissen
Daisy Crawley
Flavio Dell’Acqua
Sarah Durston
Christine Ecker
Jessica Faulkner
Vincent Frouin
Pilar Garcés
David Goyard
Lindsay Ham
Hannah Hayward
Joerg F. Hipp
Rosemary Holt
Mark Johnson
Emily J. H. Jones
Prantik Kundu
Meng-Chuan Lai
Xavier Liogier D’ardhuy
Michael V. Lombardo
David J. Lythgoe
René Mandl
Andre Marquand
Maarten Mennes
Andreas Meyer-Lindenberg
Carolin Moessnang
Nico Bast
Laurence O’Dwyer
Marianne Oldehinkel
Bob Oranje
Gahan Pandina
Antonio Persico
Barbara Ruggeri
Declan G.M. Murphy
Amber N. V. Ruigrok
Jessica Sabet
Roberto Sacco
Antonia San José Cáceres
Emily Simonoff
Will Spooren
Julian Tillmann
Roberto Toro
Heike Tost
Jack Waldman
Steve C. R. Williams
Caroline Wooldridge
Marcel P. Zwiers
Declan Murphy
Decomposing the Brain in Autism: Linking Behavioral Domains to Neuroanatomical Variation and Genomic Underpinnings.
Hanna Seelemeyer
Caroline Gurr
Johanna Leyhausen
Lisa M. Berg
Charlotte M. Pretzsch
Tim Schäfer
Bassem Hermila
Christine M. Freitag
Eva Loth
Beth Oakley
Luke Mason
Jan K. Buitelaar
Christian Beckmann
Dorothea L. Floris
Tony Charman
Tobias Banaschewski
Thomas Bourgeron
Jumana Ahmad
Sara Ambrosino
Bonnie Auyeung … (see 56 more)
Simon Baron-Cohen
Sarah Baumeister
Sven Bölte
Carsten Bours
Michael Brammer
Daniel Brandeis
Claudia Brogna
Yvette de Bruijn
Bhismadev Chakrabarti
Ineke Cornelissen
Daisy Crawley
Flavio Dell’Acqua
Sarah Durston
Christine Ecker
Jessica Faulkner
Vincent Frouin
Pilar Garcés
David Goyard
Lindsay Ham
Hannah Hayward
Joerg F. Hipp
Rosemary Holt
Mark Johnson
Emily J. H. Jones
Prantik Kundu
Meng-Chuan Lai
Xavier Liogier D’ardhuy
Michael V. Lombardo
David J. Lythgoe
René Mandl
Andre Marquand
Maarten Mennes
Andreas Meyer-Lindenberg
Carolin Moessnang
Nico Bast
Laurence O’Dwyer
Marianne Oldehinkel
Bob Oranje
Gahan Pandina
Antonio Persico
Barbara Ruggeri
Amber N. V. Ruigrok
Jessica Sabet
Roberto Sacco
Antonia San José Cáceres
Emily Simonoff
Will Spooren
Julian Tillmann
Roberto Toro
Heike Tost
Jack Waldman
Steve C. R. Williams
Caroline Wooldridge
Marcel P. Zwiers
Declan Murphy
Decomposing the Brain in Autism: Linking Behavioral Domains to Neuroanatomical Variation and Genomic Underpinnings.
Hanna Seelemeyer
Caroline Gurr
Johanna Leyhausen
Lisa M. Berg
Charlotte M. Pretzsch
Tim Schäfer
Bassem Hermila
Christine M. Freitag
Eva Loth
Beth Oakley
Luke Mason
Jan K. Buitelaar
Christian Beckmann
Dorothea L. Floris
Tony Charman
Tobias Banaschewski
Thomas Bourgeron
Jumana Ahmad
Sara Ambrosino
Bonnie Auyeung … (see 56 more)
Simon Baron-Cohen
Sarah Baumeister
Sven Bölte
Carsten Bours
Michael Brammer
Daniel Brandeis
Claudia Brogna
Yvette de Bruijn
Bhismadev Chakrabarti
Ineke Cornelissen
Daisy Crawley
Flavio Dell’Acqua
Sarah Durston
Christine Ecker
Jessica Faulkner
Vincent Frouin
Pilar Garcés
David Goyard
Lindsay Ham
Hannah Hayward
Joerg F. Hipp
Rosemary Holt
Mark Johnson
Emily J. H. Jones
Prantik Kundu
Meng-Chuan Lai
Xavier Liogier D’ardhuy
Michael V. Lombardo
David J. Lythgoe
René Mandl
Andre Marquand
Maarten Mennes
Andreas Meyer-Lindenberg
Carolin Moessnang
Nico Bast
Laurence O’Dwyer
Marianne Oldehinkel
Bob Oranje
Gahan Pandina
Antonio Persico
Barbara Ruggeri
Amber N. V. Ruigrok
Jessica Sabet
Roberto Sacco
Antonia San José Cáceres
Emily Simonoff
Will Spooren
Julian Tillmann
Roberto Toro
Heike Tost
Jack Waldman
Steve C.R. Williams
Caroline Wooldridge
Marcel P. Zwiers
Declan Murphy
Ensemble machine learning to accelerate industrial decarbonization: Prediction of Hansen solubility parameters for streamlined chemical solvent selection
Eslam G. Al-Sakkari
Ahmed Ragab
Mostafa Amer
Olumoye Ajao
Marzouk Benali
Daria Camilla Boffito
Mouloud Amazouz