Towards Protein Sequence & Structure Co-Design with Multi-Modal Language Models
Stephen Zhewen Lu
Jiarui Lu
Hongyu Guo
Proteins perform diverse biological functions, governed by the intricate relationship between their sequence and three-dimensional structure… (see more). While protein language models (PLMs) have demonstrated remarkable success in functional annotation and structure prediction, their potential for sequence-structure co-design remains underexplored. This limitation arises from pre-training objectives that favor masked token prediction over generative modeling. In this work, we systematically explore sampling strategies to enhance the generative capabilities of PLMs for co-design. Notably, we introduce a ranked iterative decoding with re-masking scheme, enabling PLMs to generate sequences and structures more effectively. Benchmarking ESM3 across multiple scales, we demonstrate that using PLMs effectively at sampling time for co-design tasks can outperform specialized architectures that lack comparable scaling properties. Our work advances the field of computational protein design by equipping PLMs with robust generative capabilities tailored to sequence-structure interdependence.
Towards Protein Sequence & Structure Co-Design with Multi-Modal Language Models
Stephen Zhewen Lu
Jiarui Lu
Hongyu Guo
Proteins perform diverse biological functions, governed by the intricate relationship between their sequence and three-dimensional structure… (see more). While protein language models (PLMs) have demonstrated remarkable success in functional annotation and structure prediction, their potential for sequence-structure co-design remains underexplored. This limitation arises from pre-training objectives that favor masked token prediction over generative modeling. In this work, we systematically explore sampling strategies to enhance the generative capabilities of PLMs for co-design. Notably, we introduce a ranked iterative decoding with re-masking scheme, enabling PLMs to generate sequences and structures more effectively. Benchmarking ESM3 across multiple scales, we demonstrate that using PLMs effectively at sampling time for co-design tasks can outperform specialized architectures that lack comparable scaling properties. Our work advances the field of computational protein design by equipping PLMs with robust generative capabilities tailored to sequence-structure interdependence.
Who is your ideal peer mentor? A qualitative study to identify cancer patient preferences for a digital peer support app
Loes Knaapen
Andrea M. Laizner
Kelly Agnew
Xiao Jian Du
Douaa El Abiad
Luc Galarneau
Susie Judd
James Manalad
Ridhi Mittal
Tristan Williams
Brandon Woolfson
Angele Wen
Adaptive Local Training in Federated Learning
Donald Shenaj
Pietro Zanuttigh
Federated Learning is a machine learning paradigm where multiple clients collaboratively train a global model by exchanging their locally tr… (see more)ained model weights instead of raw data. In the standard setting, every client trains the local model for the same number of epochs. We introduce ALT (Adaptive Local Training), a simple yet effective feedback mechanism that could be introduced at the client side to limit unnecessary and degrading computations. ALT dynamically adjusts the number of training epochs for each client based on the similarity between their local representations and the global one, ensuring that well-aligned clients can train longer without experiencing client drift. We evaluated ALT on federated partitions of the CIFAR-10 and TinyImageNet datasets, demonstrating its effectiveness in improving model convergence and stability.
Adaptive Local Training in Federated Learning
Donald Shenaj
Pietro Zanuttigh
Federated learning is a machine learning paradigm where multiple clients collaboratively train a global model by exchanging their locally tr… (see more)ained model weights instead of raw data. In the standard setting, every client trains the local model for the same number of epochs. We introduce ALT (Adaptive Local Training), a simple yet effective feedback mechanism that can be exploited at the client side to limit unnecessary and degrading computations. ALT dynamically adjusts the number of training epochs for each client based on the similarity between their local representations and the global one, ensuring that well-aligned clients can train longer without experiencing client drift. We evaluated ALT on federated partitions of the CIFAR-10 and Tiny-ImageNet datasets, demonstrating its effectiveness in improving model convergence and stability.
AlignVLM: Bridging Vision and Language Latent Spaces for Multimodal Understanding
Ahmed Masry
Juan A. Rodriguez
Tianyu Zhang
Suyuchen Wang
Chao Wang
Aarash Feizi
Akshay Kalkunte Suresh
Abhay Puri
Xiangru Jian
Pierre-Andre Noel
Sathwik Tejaswi Madhusudhan
Enamul Hoque
Issam Hadj Laradji
David Vazquez
Perouz Taslakian … (see 2 more)
Spandana Gella
Sai Rajeswar
Aligning visual features with language embeddings is a key challenge in vision-language models (VLMs). The performance of such models hinges… (see more) on having a good connector that maps visual features generated by a vision encoder to a shared embedding space with the LLM while preserving semantic similarity. Existing connectors, such as multilayer perceptrons (MLPs), often produce out-of-distribution or noisy inputs, leading to misalignment between the modalities. In this work, we propose a novel vision-text alignment method, AlignVLM, that maps visual features to a weighted average of LLM text embeddings. Our approach leverages the linguistic priors encoded by the LLM to ensure that visual features are mapped to regions of the space that the LLM can effectively interpret. AlignVLM is particularly effective for document understanding tasks, where scanned document images must be accurately mapped to their textual content. Our extensive experiments show that AlignVLM achieves state-of-the-art performance compared to prior alignment methods. We provide further analysis demonstrating improved vision-text feature alignment and robustness to noise.
Cracking the Code of Action: A Generative Approach to Affordances for Reinforcement Learning
Lynn Cherif
Flemming Kondrup
David Venuto
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (see more)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through intent-based affordances -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances**
Cracking the Code of Action: a Generative Approach to Affordances for Reinforcement Learning
Lynn Cherif
Flemming Kondrup
David Venuto
Agents that can autonomously navigate the web through a graphical user interface (GUI) using a unified action space (e.g., mouse and keyboar… (see more)d actions) can require very large amounts of domain-specific expert demonstrations to achieve good performance. Low sample efficiency is often exacerbated in sparse-reward and large-action-space environments, such as a web GUI, where only a few actions are relevant in any given situation. In this work, we consider the low-data regime, with limited or no access to expert behavior. To enable sample-efficient learning, we explore the effect of constraining the action space through *intent-based affordances* -- i.e., considering in any situation only the subset of actions that achieve a desired outcome. We propose **Code as Generative Affordances (
Design of Ligand-Binding Proteins with Atomic Flow Matching
Junqi Liu
Shaoning Li
Chence Shi
Zhi Yang
Exploring Sparse Adapters for Scalable Merging of Parameter Efficient Experts
Samin Yeasar Arnob
Zhan Su
Minseon Kim
Oleksiy Ostapenko
Lucas Caccia
Merging parameter-efficient task experts has recently gained growing attention as a way to build modular architectures that can be rapidly a… (see more)dapted on the fly for specific downstream tasks, without requiring additional fine-tuning. Typically, LoRA (Low-Rank Adaptation) serves as the foundational building block of such parameter-efficient modular architectures, leveraging low-rank weight structures to reduce the number of trainable parameters. In this paper, we study the properties of sparse adapters, which train only a subset of weights in the base neural network, as potential building blocks of modular architectures. First, we propose a simple method for training highly effective sparse adapters, which is conceptually simpler than existing methods in the literature and surprisingly outperforms both LoRA and full fine-tuning in our setting. Next, we investigate the merging properties of these sparse adapters by merging adapters for up to 20 natural language processing tasks, thus scaling beyond what is usually studied in the literature. Our findings demonstrate that sparse adapters yield superior in-distribution performance post-merging compared to LoRA or full model merging. Achieving strong held-out performance remains a challenge for all methods considered.
Exploring Sparse Adapters for Scalable Merging of Parameter Efficient Experts
Samin Yeasar Arnob
Zhan Su
Minseon Kim
Oleksiy Ostapenko
Lucas Caccia
Merging parameter-efficient task experts has recently gained growing attention as a way to build modular architectures that can be rapidly a… (see more)dapted on the fly for specific downstream tasks, without requiring additional fine-tuning. Typically, LoRA (Low-Rank Adaptation) serves as the foundational building block of such parameter-efficient modular architectures, leveraging low-rank weight structures to reduce the number of trainable parameters. In this paper, we study the properties of sparse adapters, which train only a subset of weights in the base neural network, as potential building blocks of modular architectures. First, we propose a simple method for training highly effective sparse adapters, which is conceptually simpler than existing methods in the literature and surprisingly outperforms both LoRA and full fine-tuning in our setting. Next, we investigate the merging properties of these sparse adapters by merging adapters for up to 20 natural language processing tasks, thus scaling beyond what is usually studied in the literature. Our findings demonstrate that sparse adapters yield superior in-distribution performance post-merging compared to LoRA or full model merging. Achieving strong held-out performance remains a challenge for all methods considered.
From Intuition to Understanding: Using AI Peers to Overcome Physics Misconceptions
Ruben Weijers
Denton Wu
Hannah Betts
Tamara Jacod
Yuxiang Guan
Vidya Sujaya
Kushal Dev
Toshali Goel
William Delooze
Ying Wu
Kellin Pelrine
Generative AI has the potential to transform personalization and accessibility of education. However, it raises serious concerns about accur… (see more)acy and helping students become independent critical thinkers. In this study, we designed a helpful yet fallible AI "Peer" to help students correct fundamental physics misconceptions related to Newtonian mechanic concepts. In contrast to approaches that seek near-perfect accuracy to create an authoritative AI tutor or teacher, we directly inform students that this AI can answer up to 40\% of questions incorrectly. In a randomized controlled trial with 165 students, those who engaged in targeted dialogue with the AI Peer achieved post-test scores that were, on average, 10.5 percentage points higher—with over 20 percentage points higher normalized gain—than a control group that discussed physics history. Qualitative feedback indicated that 91% of the treatment group's AI interactions were rated as helpful. Furthermore, by comparing student performance on pre- and post-test questions about the same concept, along with experts' annotations of the AI interactions, we find initial evidence suggesting the improvement in performance does not depend on the correctness of the AI. With further research, the AI Peer paradigm described here could open new possibilities for how we learn, adapt to, and grow with AI.