We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Disentanglement aims to recover meaningful latent ground-truth factors from the observed distribution solely, and is formalized through the … (see more)theory of identifiability. The identifiability of independent latent factors is proven to be impossible in the unsupervised i.i.d. setting under a general nonlinear map from factors to observations. In this work, however, we demonstrate that it is possible to recover quantized latent factors under a generic nonlinear diffeomorphism. We only assume that the latent factors have independent discontinuities in their density, without requiring the factors to be statistically independent. We introduce this novel form of identifiability, termed quantized factor identifiability, and provide a comprehensive proof of the recovery of the quantized factors.
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language mode… (see more)ls, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on toke
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language mode… (see more)ls, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on toke
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language mode… (see more)ls, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on toke
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language mode… (see more)ls, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on toke
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language mode… (see more)ls, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on toke
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language mode… (see more)ls, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on toke
Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language mode… (see more)ls, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on toke
Modeling strong gravitational lenses in order to quantify distortions in the images of background sources and to reconstruct the mass densit… (see more)y in foreground lenses has been a difficult computational challenge. As the quality of gravitational lens images increases, the task of fully exploiting the information they contain becomes computationally and algorithmically more difficult. In this work, we use a neural network based on the recurrent inference machine to reconstruct simultaneously an undistorted image of the background source and the lens mass density distribution as pixelated maps. The method iteratively reconstructs the model parameters (the image of the source and a pixelated density map) by learning the process of optimizing the likelihood given the data using the physical model (a ray-tracing simulation), regularized by a prior implicitly learned by the neural network through its training data. When compared to more traditional parametric models, the proposed method is significantly more expressive and can reconstruct complex mass distributions, which we demonstrate by using realistic lensing galaxies taken from the IllustrisTNG cosmological hydrodynamic simulation.
In this paper, hypernetworks are trained to generate behaviors across a range of unseen task conditions, via a novel TD-based training objec… (see more)tive and data from a set of near-optimal RL solutions for training tasks. This work relates to meta RL, contextual RL, and transfer learning, with a particular focus on zero-shot performance at test time, enabled by knowledge of the task parameters (also known as context). Our technical approach is based upon viewing each RL algorithm as a mapping from the MDP specifics to the near-optimal value function and policy and seek to approximate it with a hypernetwork that can generate near-optimal value functions and policies, given the parameters of the MDP. We show that, under certain conditions, this mapping can be considered as a supervised learning problem. We empirically evaluate the effectiveness of our method for zero-shot transfer to new reward and transition dynamics on a series of continuous control tasks from DeepMind Control Suite. Our method demonstrates significant improvements over baselines from multitask and meta RL approaches.
2023-06-26
Proceedings of the AAAI Conference on Artificial Intelligence (published)
This work investigates the evolution of latent space when deep learning models are trained incrementally in non-stationary environments that… (see more) stem from concept drift. We propose a methodology for visualizing the incurred change in latent representations. We further show that classes not targeted by concept drift can be negatively affected, suggesting that the observation of all classes during learning may regularize the latent space.
2023-06-26
Proceedings of the AAAI Conference on Artificial Intelligence (published)