Adaptation, Comparison and Practical Implementation of Fairness Schemes in Kidney Exchange Programs
In Kidney Exchange Programs (KEPs), each participating patient is registered together with an incompatible donor. Donors without an incompat… (see more)ible patient can also register. Then, KEPs typically maximize overall patient benefit through donor exchanges. This aggregation of benefits calls into question potential individual patient disparities in terms of access to transplantation in KEPs. Considering solely this utilitarian objective may become an issue in the case where multiple exchange plans are optimal or near-optimal. In fact, current KEP policies are all-or-nothing, meaning that only one exchange plan is determined. Each patient is either selected or not as part of that unique solution. In this work, we seek instead to find a policy that contemplates the probability of patients of being in a solution. To guide the determination of our policy, we adapt popular fairness schemes to KEPs to balance the usual approach of maximizing the utilitarian objective. Different combinations of fairness and utilitarian objectives are modelled as conic programs with an exponential number of variables. We propose a column generation approach to solve them effectively in practice. Finally, we make an extensive comparison of the different schemes in terms of the balance of utility and fairness score, and validate the scalability of our methodology for benchmark instances from the literature.
Assemblies, synapse clustering, and network topology interact with plasticity to explain structure-function relationships of the cortical connectome
András Ecker
Daniela Egas Santander
Marwan Abdellah
Jorge Blanco Alonso
Sirio Bolaños-Puchet
Giuseppe Chindemi
Dhuruva Priyan Gowri Mariyappan
James B. Isbister
James King
Pramod Kumbhar
Ioannis Magkanaris
Michael W. Reimann
Synaptic plasticity underlies the brain’s ability to learn and adapt. While experiments in brain slices have revealed mechanisms and proto… (see more)cols for the induction of plasticity between pairs of neurons, how these synaptic changes are coordinated in biological neuronal networks to ensure the emergence of learning remains poorly understood. Simulation and modeling have emerged as important tools to study learning in plastic networks, but have yet to achieve a scale that incorporates realistic network structure, active dendrites, and multi-synapse interactions, key determinants of synaptic plasticity. To rise to this challenge, we endowed an existing large-scale cortical network model, incorporating data-constrained dendritic processing and multi-synaptic connections, with a calcium-based model of functional plasticity that captures the diversity of excitatory connections extrapolated to in vivo-like conditions. This allowed us to study how dendrites and network structure interact with plasticity to shape stimulus representations at the microcircuit level. In our exploratory simulations, plasticity acted sparsely and specifically, firing rates and weight distributions remained stable without additional homeostatic mechanisms. At the circuit level, we found plasticity was driven by co-firing stimulus-evoked functional assemblies, spatial clustering of synapses on dendrites, and the topology of the network connectivity. As a result of the plastic changes, the network became more reliable with more stimulus-specific responses. We confirmed our testable predictions in the MICrONS datasets, an openly available electron microscopic reconstruction of a large volume of cortical tissue. Our results quantify at a large scale how the dendritic architecture and higher-order structure of cortical microcircuits play a central role in functional plasticity and provide a foundation for elucidating their role in learning.
Curiosity-Driven Exploration via Temporal \\ Contrastive Learning
Faisal Mohamed
Catherine Ji
Benjamin Eysenbach
Exploration remains a key challenge in reinforcement learning (RL), especially in long-horizon tasks and environments with high-dimensional … (see more)observations. A common strategy for effective exploration is to promote state coverage or novelty, which often involves estimating the agent's state visitation distribution. In this paper, we propose \textbf{C}uriosity-Driven Exploration via \textbf{Te}mporal \textbf{C}ontrastive Learning (\methodName), an exploration method based on temporal contrastive learning that rewards agents for reaching states with unexpected futures. This incentivizes uncovering meaningful less-visited states. \methodName is simple and does not require explicit density or uncertainty estimation, while learning representations aligned with the RL objective. It consistently outperforms standard baselines in complex mazes using different embodiments (Ant and Humanoid) and robotic manipulation tasks, while also yielding more diverse behaviors in Craftax without requiring task-specific information.
A Geometric Lens on RL Environment Complexity Based on Ricci Curvature
We introduce Ollivier-Ricci Curvature (ORC) as an information-geometric tool for analyzing the local structure of reinforcement learning (RL… (see more)) environments. We establish a novel connection between ORC and the Successor Representation (SR), enabling a geometric interpretation of environment dynamics decoupled from reward signals. Our analysis shows that states with positive and negative ORC values correspond to regions where random walks converge and diverge respectively, which are often critical for effective exploration. ORC is highly correlated with established environment complexity metrics, yet integrates naturally with standard RL frameworks based on SR and provides both global and local complexity measures. Leveraging this property, we propose an ORC-based intrinsic reward that guides agents toward divergent regions and away from convergent traps. Empirical results demonstrate that our curvature-driven reward substantially improves exploration performance across diverse environments, outperforming both random and count-based intrinsic reward baselines.
Harnessing agent-based frameworks in CellAgentChat to unravel cell-cell interactions from single-cell and spatial transcriptomics
Vishvak Raghavan
Yumin Zheng
Health data issues in Africa: time for digitization, standardization and harmonization
Abdoelnaser Degoot
Ismaël Koné
Shakuntala Baichoo
Mercy Ngungu
Nzisa Liku
Judit Kumuthini
Joyce Nakatumba-Nabende
Bubacarr Bah
HVAC-GRACE: Transferable Building Control via Heterogeneous Graph Neural Network Policies
Anaïs Berkes
Donna Vakalis
Buildings consume 40% of global energy, with HVAC systems responsible for up to half of that demand. As energy use grows, optimizing HVAC ef… (see more)ficiency is critical to meeting climate goals. While reinforcement learning (RL) offers a promising alternative to rule-based control, real-world adoption is limited by poor sample efficiency and generalisation. We introduce HVAC-GRACE, a graph-based RL framework that models buildings as heterogeneous graphs and integrates spatial message passing directly into temporal GRU gates. This enables each zone to learn control actions informed by both its own history and its structural context. Our architecture supports zero-shot transfer by learning topology-agnostic functions—but initial experiments reveal that this benefit depends on sufficient conditioned zone connectivity to maintain gradient flow. These findings highlight both the promise and the architectural requirements of scalable, transferable RL for building control
Model approximation in MDPs with unbounded per-step cost
Berk Bozkurt
Ashutosh Nayyar
Yi Ouyang
We consider the problem of designing a control policy for an infinite-horizon discounted cost Markov decision process …
Modulation of leg trajectory by transcranial magnetic stimulation during walking
H. Bourgeois
Rose Guay-Hottin
El-Mehdi Meftah
Marina Martinez
D. Barthélemy
Self-Predictive Representations for Combinatorial Generalization in Behavioral Cloning
Daniel Lawson
Adriana Hugessen
Charlotte Cloutier
Behavioral cloning (BC) methods trained with supervised learning (SL) are an effective way to learn policies from human demonstrations in do… (see more)mains like robotics. Goal-conditioning these policies enables a single generalist policy to capture diverse behaviors contained within an offline dataset. While goal-conditioned behavior cloning (GCBC) methods can perform well on in-distribution training tasks, they do not necessarily generalize zero-shot to tasks that require conditioning on novel state-goal pairs, i.e. combinatorial generalization. In part, this limitation can be attributed to a lack of temporal consistency in the state representation learned by BC; if temporally related states are encoded to similar latent representations, then the out-of-distribution gap for novel state-goal pairs would be reduced. Hence, encouraging this temporal consistency in the representation space should facilitate combinatorial generalization. Successor representations, which encode the distribution of future states visited from the current state, nicely encapsulate this property. However, previous methods for learning successor representations have relied on contrastive samples, temporal-difference (TD) learning, or both. In this work, we propose a simple yet effective representation learning objective,
Speciation of coral-associated barnacles: generalists versus specialists in the Indo-West Pacific
Lorenzo C. Halasan
Yoko Nozawa
Benny Kwok Kan Chan
Using machine learning algorithms to predict students' general self-efficacy in PISA 2018
Bin Tan
Hao-Yue Jin