Portrait of Sarath Chandar

Sarath Chandar

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Indian Institute of Technology Madras
Research Topics
Deep Learning
Medical Machine Learning
Natural Language Processing
Online Learning
Optimization
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

Sarath Chandar is an assistant professor at Polytechnique Montreal's Department of Computer and Software Engineering, where he leads the Chandar Research Lab. He is also a Core Academic Member at Mila – Quebec Artificial Intelligence Institute and holds a Canada CIFAR AI Chair and the Canada Research Chair in Lifelong Machine Learning.

Chandar’s research interests include lifelong learning, deep learning, optimization, reinforcement learning and natural language processing. To promote research in lifelong learning, Chandar created the Conference on Lifelong Learning Agents (CoLLAs) in 2022, for which he served as program chair in 2022 and 2023.

He has a PhD from Université de Montréal and an MSc (By Research) from the Indian Institute of Technology Madras.

Current Students

Master's Research - Université de Montréal
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
Principal supervisor :
Independent visiting researcher - no
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Principal supervisor :
Research Intern - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Independent visiting researcher - NA
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
Co-supervisor :
PhD - Polytechnique Montréal
Postdoctorate - Polytechnique Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Independent visiting researcher
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
Co-supervisor :
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal

Publications

Behavioral Cloning for Crystal Design
Prashant Govindarajan
Santiago Miret
Jarrid Rector-Brooks
Mariano Phielipp
Janarthanan Rajendran
Solid-state materials, which are made up of periodic 3D crystal structures, are particularly useful for a variety of real-world applications… (see more) such as batteries, fuel cells and catalytic materials. Designing solid-state materials, especially in a robust and automated fashion, remains an ongoing challenge. To further the automated design of crystalline materials, we propose a method to learn to design valid crystal structures given a crystal skeleton. By incorporating Euclidean equivariance into a policy network, we portray the problem of designing new crystals as a sequential prediction task suited for imitation learning. At each step, given an incomplete graph of a crystal skeleton, an agent assigns an element to a specific node. We adopt a behavioral cloning strategy to train the policy network on data consisting of curated trajectories generated from known crystals.
Dealing With Non-stationarity in Decentralized Cooperative Multi-Agent Deep Reinforcement Learning via Multi-Timescale Learning
Hadi Nekoei
Akilesh Badrinaaraayanan
Amit Sinha
Mohammad Amin Amini
Janarthanan Rajendran
An Empirical Investigation of the Role of Pre-training in Lifelong Learning
Sanket Vaibhav Mehta
Darshan Patil
Emma Strubell
The lifelong learning paradigm in machine learning is an attractive alternative to the more prominent isolated learning scheme not only due … (see more)to its resemblance to biological learning, but also its potential to reduce energy waste by obviating excessive model re-training. A key challenge to this paradigm is the phenomenon of catastrophic forgetting. With the increasing popularity and success of pre-trained models in machine learning, we pose the question: What role does pre-training play in lifelong learning, specifically with respect to catastrophic forgetting? We investigate existing methods in the context of large, pre-trained models and evaluate their performance on a variety of text and image classification tasks, including a large-scale study using a novel dataset of 15 diverse NLP tasks. Across all settings, we observe that generic pre-training implicitly alleviates the effects of catastrophic forgetting when learning multiple tasks sequentially compared to randomly initialized models. We then further investigate why pre-training alleviates forgetting in this setting. We study this phenomenon by analyzing the loss landscape, finding that pre-trained weights appear to ease forgetting by leading to wider minima. Based on this insight, we propose jointly optimizing for current task loss and loss basin sharpness in order to explicitly encourage wider basins during sequential fine-tuning. We show that this optimization approach leads to performance comparable to the state-of-the-art in task-sequential continual learning across multiple settings, without retaining a memory that scales in size with the number of tasks.
Replay Buffer with Local Forgetting for Adapting to Local Environment Changes in Deep Model-Based Reinforcement Learning
Ali Rahimi-Kalahroudi
Janarthanan Rajendran
Ida Momennejad
Harm van Seijen
Self-Influence Guided Data Reweighting for Language Model Pre-training
Megh Thakkar
Tolga Bolukbasi
Sriram Ganapathy
Shikhar Vashishth
Partha Talukdar
Language Models (LMs) pre-trained with selfsupervision on large text corpora have become the default starting point for developing models fo… (see more)r various NLP tasks. Once the pre-training corpus has been assembled, all data samples in the corpus are treated with equal importance during LM pre-training. However, due to varying levels of relevance and quality of data, equal importance to all the data samples may not be the optimal choice. While data reweighting has been explored in the context of task-specific supervised learning and LM fine-tuning, model-driven reweighting for pretraining data has not been explored. We fill this important gap and propose PRESENCE, a method for jointly reweighting samples by leveraging self-influence (SI) scores as an indicator of sample importance and pre-training. PRESENCE promotes novelty and stability for model pre-training. Through extensive analysis spanning multiple model sizes, datasets, and tasks, we present PRESENCE as an important first step in the research direction of sample reweighting for pre-training language models.
Post-hoc Interpretability for Neural NLP: A Survey
Andreas Madsen
Replay Buffer With Local Forgetting for Adaptive Deep Model-Based Reinforcement Learning
Ali Rahimi-Kalahroudi
Janarthanan Rajendran
Ida Momennejad
Harm van Seijen
One of the key behavioral characteristics used in neuroscience to determine whether the subject of study—be it a rodent or a human—exhib… (see more)its model-based learning is effective adaptation to local changes in the environment. In reinforcement learning, however, recent work has shown that modern deep model-based reinforcement-learning (MBRL) methods adapt poorly to such changes. An explanation for this mismatch is that MBRL methods are typically designed with sample-efficiency on a single task in mind and the requirements for effective adaptation are substantially higher, both in terms of the learned world model and the planning routine. One particularly challenging requirement is that the learned world model has to be sufficiently accurate throughout relevant parts of the state-space. This is challenging for deep-learning-based world models due to catastrophic forgetting. And while a replay buffer can mitigate the effects of catastrophic forgetting, the traditional first-in-first-out replay buffer precludes effective adaptation due to maintaining stale data. In this work
PatchBlender: A Motion Prior for Video Transformers
Gabriele Prato
Yale Song
Janarthanan Rajendran
Neel Joshi
Local Structure Matters Most: Perturbation Study in NLU
Louis Clouâtre
Prasanna Parthasarathi
Recent research analyzing the sensitivity of natural language understanding models to word-order perturbations has shown that neural models … (see more)are surprisingly insensitive to the order of words.In this paper, we investigate this phenomenon by developing order-altering perturbations on the order of words, subwords, and characters to analyze their effect on neural models’ performance on language understanding tasks.We experiment with measuring the impact of perturbations to the local neighborhood of characters and global position of characters in the perturbed texts and observe that perturbation functions found in prior literature only affect the global ordering while the local ordering remains relatively unperturbed.We empirically show that neural models, invariant of their inductive biases, pretraining scheme, or the choice of tokenization, mostly rely on the local structure of text to build understanding and make limited use of the global structure.
Staged independent learning: Towards decentralized cooperative multi-agent Reinforcement Learning
Hadi Nekoei
Akilesh Badrinaaraayanan
Amit Sinha
Mohammad Amini
Janarthanan Rajendran
We empirically show that classic ideas from two-time scale stochastic approximation \citep{borkar1997stochastic} can be combined with sequen… (see more)tial iterative best response (SIBR) to solve complex cooperative multi-agent reinforcement learning (MARL) problems. We first start with giving a multi-agent estimation problem as a motivating example where SIBR converges while parallel iterative best response (PIBR) does not. Then we present a general implementation of staged multi-agent RL algorithms based on SIBR and multi-time scale stochastic approximation, and show that our new methods which we call Staged Independent Proximal Policy Optimization (SIPPO) and Staged Independent Q-learning (SIQL) outperform state-of-the-art independent learning on almost all the tasks in the epymarl \citep{papoudakis2020benchmarking} benchmark. This can be seen as a first step towards more decentralized MARL methods based on SIBR and multi-time scale learning.
Scaling Laws for the Few-Shot Adaptation of Pre-trained Image Classifiers
Gabriele Prato
Simon Guiroy
Ethan Caballero
Empirical science of neural scaling laws is a rapidly growing area of significant importance to the future of machine learning, particularly… (see more) in the light of recent breakthroughs achieved by large-scale pre-trained models such as GPT-3, CLIP and DALL-e. Accurately predicting the neural network performance with increasing resources such as data, compute and model size provides a more comprehensive evaluation of different approaches across multiple scales, as opposed to traditional point-wise comparisons of fixed-size models on fixed-size benchmarks, and, most importantly, allows for focus on the best-scaling, and thus most promising in the future, approaches. In this work, we consider a challenging problem of few-shot learning in image classification, especially when the target data distribution in the few-shot phase is different from the source, training, data distribution, in a sense that it includes new image classes not encountered during training. Our current main goal is to investigate how the amount of pre-training data affects the few-shot generalization performance of standard image classifiers. Our key observations are that (1) such performance improvements are well-approximated by power laws (linear log-log plots) as the training set size increases, (2) this applies to both cases of target data coming from either the same or from a different domain (i.e., new classes) as the training data, and (3) few-shot performance on new classes converges at a faster rate than the standard classification performance on previously seen classes. Our findings shed new light on the relationship between scale and generalization.
Local Structure Matters Most: Perturbation Study in NLU
Louis Clouâtre
Prasanna Parthasarathi
Recent research analyzing the sensitivity of natural language understanding models to word-order perturbations has shown that neural models … (see more)are surprisingly insensitive to the order of words.In this paper, we investigate this phenomenon by developing order-altering perturbations on the order of words, subwords, and characters to analyze their effect on neural models’ performance on language understanding tasks.We experiment with measuring the impact of perturbations to the local neighborhood of characters and global position of characters in the perturbed texts and observe that perturbation functions found in prior literature only affect the global ordering while the local ordering remains relatively unperturbed.We empirically show that neural models, invariant of their inductive biases, pretraining scheme, or the choice of tokenization, mostly rely on the local structure of text to build understanding and make limited use of the global structure.