Portrait of Nicolas Chapados

Nicolas Chapados

Associate Industry Member
Adjunct Professor, Polytechnique Montréal, Department of Applied Mathematics
Vice-President, Research, ServiceNow Research
Research Topics
Deep Learning

Biography

Nicolas Chapados is VP of research at ServiceNow Inc. He holds an engineering degree from McGill University and a PhD in computer science from Université de Montréal. In 2021, while still writing his thesis, Chapados and his advisor Yoshua Bengio co-founded ApSTAT Technologies, a machine learning technology transfer firm that applies cutting-edge academic research ideas to areas like insurance risk evaluation, supply chain planning, business forecasting, biotechnology and hedge fund management. He then went on to co-found a number of spin-off companies: Imagia, which focuses on the AI analysis of medical images to detect and quantify cancer early; Element AI, which was acquired by ServiceNow in January 2021; and Chapados Couture Capital, a quantitative asset manager. Chapados’ research interests include time series modelling, natural language processing and optimal decision-making. He holds the Chartered Financial Analyst (CFA) designation.

Current Students

PhD - Université de Montréal
Principal supervisor :

Publications

BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Juan Rodriguez
Xiangru Jian
Siba Smarak Panigrahi
Tianyu Zhang
Aarash Feizi
Abhay Puri
Akshay Kalkunte
Franccois Savard
Ahmed Masry
Shravan Nayak
Rabiul Awal
Mahsa Massoud
Amirhossein Abaskohi
Zichao Li
Suyuchen Wang
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Shubbam Agarwal
Sanket Biswas … (see 23 more)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Spandanna Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (see more) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Juan Rodriguez
Xiangru Jian
Siba Smarak Panigrahi
Tianyu Zhang
Aarash Feizi
Abhay Puri
Akshay Kalkunte
Franccois Savard
Ahmed Masry
Shravan Nayak
Rabiul Awal
Mahsa Massoud
Amirhossein Abaskohi
Zichao Li
Suyuchen Wang
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Shubbam Agarwal
Sanket Biswas … (see 23 more)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Spandanna Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (see more) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Juan Rodriguez
Xiangru Jian
Siba Smarak Panigrahi
Tianyu Zhang
Aarash Feizi
Abhay Puri
Akshay Kalkunte
Franccois Savard
Ahmed Masry
Shravan Nayak
Rabiul Awal
Mahsa Massoud
Amirhossein Abaskohi
Zichao Li
Suyuchen Wang
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Shubbam Agarwal
Sanket Biswas … (see 23 more)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Simon Fauvel
Sathwik Tejaswi
Srinivas Sunkara
Joao Monteiro
Krishnamurthy Dj Dvijotham
Torsten Scholak
Sepideh Kharaghani
Sean Hughes
M. Özsu
Issam Hadj Laradji
Spandanna Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (see more) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Roland Riachi
James Requeima
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (see more) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Roland Riachi
James Requeima
Alexandre Lacoste
Forecasting is a critical task in decision making across various domains. While numerical data provides a foundation, it often lacks crucial… (see more) context necessary for accurate predictions. Human forecasters frequently rely on additional information, such as background knowledge or constraints, which can be efficiently communicated through natural language. However, the ability of existing forecasting models to effectively integrate this textual information remains an open question. To address this, we introduce"Context is Key"(CiK), a time series forecasting benchmark that pairs numerical data with diverse types of carefully crafted textual context, requiring models to integrate both modalities. We evaluate a range of approaches, including statistical models, time series foundation models, and LLM-based forecasters, and propose a simple yet effective LLM prompting method that outperforms all other tested methods on our benchmark. Our experiments highlight the importance of incorporating contextual information, demonstrate surprising performance when using LLM-based forecasting models, and also reveal some of their critical shortcomings. By presenting this benchmark, we aim to advance multimodal forecasting, promoting models that are both accurate and accessible to decision-makers with varied technical expertise. The benchmark can be visualized at https://servicenow.github.io/context-is-key-forecasting/v0/ .
Fine-Tuning Web Agents: It Works, But It's Trickier Than You Think
Massimo Caccia
Megh Thakkar
Léo Boisvert
Thibault Le Sellier de Chezelles
Alexandre Piché
Alexandre Lacoste
Recent advancements in large language models (LLMs) have sparked interest in developing autonomous web agents capable of performing digital … (see more)tasks through web interfaces in a human-like manner. However, even the strongest closed-source models often struggle to achieve robust results on several benchmarks, while a notable performance gap exists between them and open-source counterparts. This study investigates the potential of fine-tuning to enhance the performance of a smaller, lower-performing but cost-efficient LLM by leveraging successful traces from stronger LLMs, referred to as experts. We outline a comprehensive pipeline for data collection, filtering, and supervised fine-tuning and explore various behavior cloning parameters. Our experiments provide key insights into the challenges of fine-tuning LLMs into web agents on benchmarks like MiniWoB and WorkArena. Notably, we find that the fine-tuned agents' ability to predict expert trajectories does not consistently lead to improved downstream task performance. This raises issues such as off-policy bias and the loss of reasoning abilities during fine-tuning. We discuss potential solutions to these challenges and make both the codebase and a dataset of 140M tokens open-source for the community to build upon.
Fine-Tuning Web Agents: It Works, But It's Trickier Than You Think
Massimo Caccia
Megh Thakkar
Léo Boisvert
Thibault Le Sellier de Chezelles
Alexandre Piché
Alexandre Lacoste
Recent advancements in large language models (LLMs) have sparked interest in developing autonomous web agents capable of performing digital … (see more)tasks through web interfaces in a human-like manner. However, even the strongest closed-source models often struggle to achieve robust results on several benchmarks, while a notable performance gap exists between them and open-source counterparts. This study investigates the potential of fine-tuning to enhance the performance of a smaller, lower-performing but cost-efficient LLM by leveraging successful traces from stronger LLMs, referred to as experts. We outline a comprehensive pipeline for data collection, filtering, and supervised fine-tuning and explore various behavior cloning parameters. Our experiments provide key insights into the challenges of fine-tuning LLMs into web agents on benchmarks like MiniWoB and WorkArena. Notably, we find that the fine-tuned agents' ability to predict expert trajectories does not consistently lead to improved downstream task performance. This raises issues such as off-policy bias and the loss of reasoning abilities during fine-tuning. We discuss potential solutions to these challenges and make both the codebase and a dataset of 140M tokens open-source for the community to build upon.
BigDocs: An Open and Permissively-Licensed Dataset for Training Multimodal Models on Document and Code Tasks
Juan A. Rodriguez
Xiangru Jian
Siba Smarak Panigrahi
Tianyu Zhang
Aarash Feizi
Abhay Puri
Akshay Kalkunte Suresh
François Savard
Ahmed Masry
Shravan Nayak
Rabiul Awal
Mahsa Massoud
Amirhossein Abaskohi
Zichao Li
Suyuchen Wang
Pierre-Andre Noel
Mats Leon Richter
Saverio Vadacchino
Shubham Agarwal
Sanket Biswas … (see 23 more)
Sara Shanian
Ying Zhang
Noah Bolger
Kurt MacDonald
Joao Monteiro
Simon Fauvel
Sathwik Tejaswi Madhusudhan
Krishnamurthy Dj Dvijotham
Srinivas Sunkara
Torsten Scholak
Sepideh Kharaghani
M. Özsu
Sean Hughes
Issam Hadj Laradji
Spandana Gella
Perouz Taslakian
David Vazquez
Sai Rajeswar
Multimodal AI has the potential to significantly enhance document-understanding tasks, such as processing receipts, understanding workflows,… (see more) extracting data from documents, and summarizing reports. Code generation tasks that require long-structured outputs can also be enhanced by multimodality. Despite this, their use in commercial applications is often limited due to limited access to training data and restrictive licensing, which hinders open access. To address these limitations, we introduce BigDocs-7.5M, a high-quality, open-access dataset comprising 7.5 million multimodal documents across 30 tasks. We use an efficient data curation process to ensure our data is high-quality and license-permissive. Our process emphasizes accountability, responsibility, and transparency through filtering rules, traceable metadata, and careful content analysis. Additionally, we introduce BigDocs-Bench, a benchmark suite with 10 novel tasks where we create datasets that reflect real-world use cases involving reasoning over Graphical User Interfaces (GUI) and code generation from images. Our experiments show that training with BigDocs-Bench improves average performance up to 25.8% over closed-source GPT-4o in document reasoning and structured output tasks such as Screenshot2HTML or Image2Latex generation. Finally, human evaluations showed a preference for outputs from models trained on BigDocs over GPT-4o. This suggests that BigDocs can help both academics and the open-source community utilize and improve AI tools to enhance multimodal capabilities and document reasoning. The project is hosted at https://bigdocs.github.io .
Context is Key: A Benchmark for Forecasting with Essential Textual Information
Andrew Robert Williams
Arjun Ashok
Étienne Marcotte
Valentina Zantedeschi
Jithendaraa Subramanian
Roland Riachi
James Requeima
Alexandre Lacoste
RepLiQA: A Question-Answering Dataset for Benchmarking LLMs on Unseen Reference Content
Joao Monteiro
Pierre-Andre Noel
Étienne Marcotte
Sai Rajeswar
Valentina Zantedeschi
David Vazquez
Perouz Taslakian
Large Language Models (LLMs) are trained on vast amounts of data, most of which is automatically scraped from the internet. This data includ… (see more)es encyclopedic documents that harbor a vast amount of general knowledge (*e.g.*, Wikipedia) but also potentially overlap with benchmark datasets used for evaluating LLMs. Consequently, evaluating models on test splits that might have leaked into the training set is prone to misleading conclusions. To foster sound evaluation of language models, we introduce a new test dataset named RepLiQA, suited for question-answering and topic retrieval tasks. RepLiQA is a collection of five splits of test sets, four of which have not been released to the internet or exposed to LLM APIs prior to this publication. Each sample in RepLiQA comprises (1) a reference document crafted by a human annotator and depicting an imaginary scenario (*e.g.*, a news article) absent from the internet; (2) a question about the document’s topic; (3) a ground-truth answer derived directly from the information in the document; and (4) the paragraph extracted from the reference document containing the answer. As such, accurate answers can only be generated if a model can find relevant content within the provided document. We run a large-scale benchmark comprising several state-of-the-art LLMs to uncover differences in performance across models of various types and sizes in a context-conditional language modeling setting. Released splits of RepLiQA can be found here: https://huggingface.co/datasets/ServiceNow/repliqa.
WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks
Léo Boisvert
Megh Thakkar
Massimo Caccia
Thibault Le Sellier de Chezelles
Alexandre Lacoste
The ability of large language models (LLMs) to mimic human-like intelligence has led to a surge in LLM-based autonomous agents. Though recen… (see more)t LLMs seem capable of planning and reasoning given user instructions, their effectiveness in applying these capabilities for autonomous task solving remains underexplored. This is especially true in enterprise settings, where automated agents hold the promise of a high impact. To fill this gap, we propose WorkArena++, a novel benchmark consisting of 682 tasks corresponding to realistic workflows routinely performed by knowledge workers. WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents. Our empirical studies across state-of-the-art LLMs and vision-language models (VLMs), as well as human workers, reveal several challenges for such models to serve as useful assistants in the workplace. In addition to the benchmark, we provide a mechanism to effortlessly generate thousands of ground-truth observation/action traces, which can be used for fine-tuning existing models. Overall, we expect this work to serve as a useful resource to help the community progress toward capable autonomous agents. The benchmark can be found at https://github.com/ServiceNow/WorkArena/tree/workarena-plus-plus.
LLM2Vec: Large Language Models Are Secretly Powerful Text Encoders
Parishad BehnamGhader
Vaibhav Adlakha
Marius Mosbach