Portrait of Guillaume Lajoie

Guillaume Lajoie

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Mathematics and Statistics
Visiting Researcher, Google
Research Topics
AI for Science
AI in Health
Cognition
Computational Neuroscience
Deep Learning
Dynamical Systems
Optimization
Reasoning
Recurrent Neural Networks
Representation Learning

Biography

Guillaume Lajoie is an Associate professor in the Department of Mathematics and Statistics at Université de Montréal and a Core Academic Member of Mila – Quebec Artificial Intelligence Institute. He holds a Canada-CIFAR AI Research Chair, and a Canada Research Chair (CRC) in Neural Computation and Interfacing.

His research is positioned at the intersection of AI and Neuroscience where he develops tools to better understand mechanisms of intelligence common to both biological and artificial systems. His research group's contributions range from advances in multi-scale learning paradigms for large artificial systems, to applications in neurotechnology. Dr. Lajoie is actively involved in responsible AI development efforts, seeking to identify guidelines and best practices for use of AI in research and beyond.

Current Students

Collaborating researcher - ETH Zurich
Independent visiting researcher
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Research Intern - McGill University
Principal supervisor :
Master's Research - Polytechnique Montréal
Principal supervisor :
Collaborating researcher - Western Washington University (faculty; assistant prof))
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
Collaborating researcher
Principal supervisor :
Collaborating Alumni - McGill University
Principal supervisor :
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Independent visiting researcher - Champalimeau Institute for the Unknown
Postdoctorate - Université de Montréal
Research Intern - Western Washington University
Co-supervisor :
PhD - Université de Montréal

Publications

When can transformers compositionally generalize in-context?
Seijin Kobayashi
Simon Schug
Yassir Akram
Florian Redhardt
Johannes Von Oswald
João Sacramento
Many tasks can be composed from a few independent components. This gives rise to a combinatorial explosion of possible tasks, only some of w… (see more)hich might be encountered during training. Under what circumstances can transformers compositionally generalize from a subset of tasks to all possible combinations of tasks that share similar components? Here we study a modular multitask setting that allows us to precisely control compositional structure in the data generation process. We present evidence that transformers learning in-context struggle to generalize compositionally on this task despite being in principle expressive enough to do so. Compositional generalization becomes possible only when introducing a bottleneck that enforces an explicit separation between task inference and task execution.
A benchmark of individual auto-regressive models in a massive fMRI dataset
Fraçois Paugam
Basile Pinsard
Abstract Dense functional magnetic resonance imaging datasets open new avenues to create auto-regressive models of brain activity. Individua… (see more)l idiosyncrasies are obscured by group models, but can be captured by purely individual models given sufficient amounts of training data. In this study, we compared several deep and shallow individual models on the temporal auto-regression of BOLD time-series recorded during a natural video-watching task. The best performing models were then analyzed in terms of their data requirements and scaling, subject specificity, and the space-time structure of their predicted dynamics. We found the Chebnets, a type of graph convolutional neural network, to be best suited for temporal BOLD auto-regression, closely followed by linear models. Chebnets demonstrated an increase in performance with increasing amounts of data, with no complete saturation at 9 h of training data. Good generalization to other kinds of video stimuli and to resting-state data marked the Chebnets’ ability to capture intrinsic brain dynamics rather than only stimulus-specific autocorrelation patterns. Significant subject specificity was found at short prediction time lags. The Chebnets were found to capture lower frequencies at longer prediction time lags, and the spatial correlations in predicted dynamics were found to match traditional functional connectivity networks. Overall, these results demonstrate that large individual functional magnetic resonance imaging (fMRI) datasets can be used to efficiently train purely individual auto-regressive models of brain activity, and that massive amounts of individual data are required to do so. The excellent performance of the Chebnets likely reflects their ability to combine spatial and temporal interactions on large time scales at a low complexity cost. The non-linearities of the models did not appear as a key advantage. In fact, surprisingly, linear versions of the Chebnets appeared to outperform the original non-linear ones. Individual temporal auto-regressive models have the potential to improve the predictability of the BOLD signal. This study is based on a massive, publicly-available dataset, which can serve for future benchmarks of individual auto-regressive modeling.
Using neural biomarkers to personalize dosing of vagus nerve stimulation
Antonin Berthon
Lorenz Wernisch
Myrta Stoukidi
Michael Thornton
Olivier Tessier-Lariviere
Pascal Fortier-Poisson
Jorin Mamen
Max Pinkney
Susannah Lee
Elvijs Sarkans
Luca Annecchino
Ben Appleton
Philip Garsed
Bret Patterson
Samuel Gonshaw
Matjaž Jakopec
Sudhakaran Shunmugam
Tristan Edwards
Aleksi Tukiainen
Joel Jennings … (see 3 more)
Emil Hewage
Oliver Armitage
Expressivity of Neural Networks with Fixed Weights and Learned Biases
Ezekiel Williams
Avery Hee-Woon Ryoo
Thomas Jiralerspong
Alexandre Payeur
Luca Mazzucato
Does learning the right latent variables necessarily improve in-context learning?
Sarthak Mittal
Eric Elmoznino
Leo Gagnon
Sangnie Bhardwaj
Large autoregressive models like Transformers can solve tasks through in-context learning (ICL) without learning new weights, suggesting ave… (see more)nues for efficiently solving new tasks. For many tasks, e.g., linear regression, the data factorizes: examples are independent given a task latent that generates the data, e.g., linear coefficients. While an optimal predictor leverages this factorization by inferring task latents, it is unclear if Transformers implicitly do so or if they instead exploit heuristics and statistical shortcuts enabled by attention layers. Both scenarios have inspired active ongoing work. In this paper, we systematically investigate the effect of explicitly inferring task latents. We minimally modify the Transformer architecture with a bottleneck designed to prevent shortcuts in favor of more structured solutions, and then compare performance against standard Transformers across various ICL tasks. Contrary to intuition and some recent works, we find little discernible difference between the two; biasing towards task-relevant latent variables does not lead to better out-of-distribution performance, in general. Curiously, we find that while the bottleneck effectively learns to extract latent task variables from context, downstream processing struggles to utilize them for robust prediction. Our study highlights the intrinsic limitations of Transformers in achieving structured ICL solutions that generalize, and shows that while inferring the right latents aids interpretability, it is not sufficient to alleviate this problem.
Assistive sensory-motor perturbations influence learned neural representations
Pavithra Rajeswaran
Alexandre Payeur
Amy L. Orsborn
Task errors are used to learn and refine motor skills. We investigated how task assistance influences learned neural representations using B… (see more)rain-Computer Interfaces (BCIs), which map neural activity into movement via a decoder. We analyzed motor cortex activity as monkeys practiced BCI with a decoder that adapted to improve or maintain performance over days. Population dimensionality remained constant or increased with learning, counter to trends with non-adaptive BCIs. Yet, over time, task information was contained in a smaller subset of neurons or population modes. Moreover, task information was ultimately stored in neural modes that occupied a small fraction of the population variance. An artificial neural network model suggests the adaptive decoders contribute to forming these compact neural representations. Our findings show that assistive decoders manipulate error information used for long-term learning computations, like credit assignment, which informs our understanding of motor learning and has implications for designing real-world BCIs.
Online Bayesian optimization of vagus nerve stimulation.
Lorenz Wernisch
Tristan Edwards
Antonin Berthon
Olivier Tessier-Lariviere
Elvijs Sarkans
Myrta Stoukidi
Pascal Fortier-Poisson
Max Pinkney
Michael Thornton
Catherine Hanley
Susannah Lee
Joel Jennings
Ben Appleton
Philip Garsed
Bret Patterson
Buttinger Will
Samuel Gonshaw
Matjaž Jakopec
Sudhakaran Shunmugam
Jorin Mamen … (see 4 more)
Aleksi Tukiainen
Oliver Armitage
Emil Hewage
OBJECTIVE In bioelectronic medicine, neuromodulation therapies induce neural signals to the brain or organs, modifying their function. Stimu… (see more)lation devices capable of triggering exogenous neural signals using electrical waveforms require a complex and multi-dimensional parameter space to control such waveforms. Determining the best combination of parameters (waveform optimization or dosing) for treating a particular patient's illness is therefore challenging. Comprehensive parameter searching for an optimal stimulation effect is often infeasible in a clinical setting due to the size of the parameter space. Restricting this space, however, may lead to suboptimal therapeutic results, reduced responder rates, and adverse effects. Approach. As an alternative to a full parameter search, we present a flexible machine learning, data acquisition, and processing framework for optimizing neural stimulation parameters, requiring as few steps as possible using Bayesian optimization. This optimization builds a model of the neural and physiological responses to stimulations, enabling it to optimize stimulation parameters and provide estimates of the accuracy of the response model. The vagus nerve innervates, among other thoracic and visceral organs, the heart, thus controlling heart rate, making it an ideal candidate for demonstrating the effectiveness of our approach. Main results. The efficacy of our optimization approach was first evaluated on simulated neural responses, then applied to vagus nerve stimulation intraoperatively in porcine subjects. Optimization converged quickly on parameters achieving target heart rates and optimizing neural B-fiber activations despite high intersubject variability. Significance. An optimized stimulation waveform was achieved in real time with far fewer stimulations than required by alternative optimization strategies, thus minimizing exposure to side effects. Uncertainty estimates helped avoiding stimulations outside a safe range. Our approach shows that a complex set of neural stimulation parameters can be optimized in real-time for a patient to achieve a personalized precision dosing. .
Explicit Knowledge Factorization Meets In-Context Learning: What Do We Gain?
Sarthak Mittal
Eric Elmoznino
Leo Gagnon
Sangnie Bhardwaj
Learning and Aligning Structured Random Feature Networks
Vivian White
Muawiz Sajjad Chaudhary
Kameron Decker Harris
Artificial neural networks (ANNs) are considered "black boxes'' due to the difficulty of interpreting their learned weights. While choosing… (see more) the best features is not well understood, random feature networks (RFNs) and wavelet scattering ground some ANN learning mechanisms in function space with tractable mathematics. Meanwhile, the genetic code has evolved over millions of years, shaping the brain to develop variable neural circuits with reliable structure that resemble RFNs. We explore a similar approach, embedding neuro-inspired, wavelet-like weights into multilayer RFNs. These can outperform scattering and have kernels that describe their function space at large width. We build learnable and deeper versions of these models where we can optimize separate spatial and channel covariances of the convolutional weight distributions. We find that these networks can perform comparatively with conventional ANNs while dramatically reducing the number of trainable parameters. Channel covariances are most influential, and both weight and activation alignment are needed for classification performance. Our work outlines how neuro-inspired configurations may lead to better performance in key cases and offers a potentially tractable reduced model for ANN learning.
Learning and Aligning Structured Random Feature Networks
Vivian White
Muawiz Sajjad Chaudhary
Kameron Decker Harris
Artificial neural networks (ANNs) are considered ``black boxes'' due to the difficulty of interpreting their learned weights. While choosin… (see more)g the best features is not well understood, random feature networks (RFNs) and wavelet scattering ground some ANN learning mechanisms in function space with tractable mathematics. Meanwhile, the genetic code has evolved over millions of years, shaping the brain to devlop variable neural circuits with reliable structure that resemble RFNs. We explore a similar approach, embedding neuro-inspired, wavelet-like weights into multilayer RFNs. These can outperform scattering and have kernels that describe their function space at large width. We build learnable and deeper versions of these models where we can optimize separate spatial and channel covariances of the convolutional weight distributions. We find that these networks can perform comparatively with conventional ANNs while dramatically reducing the number of trainable parameters. Channel covariances are most influential, and both weight and activation alignment are needed for classification performance. Our work outlines how neuro-inspired configurations may lead to better performance in key cases and offers a potentially tractable reduced model for ANN learning.
Sources of richness and ineffability for phenomenally conscious states
Xu Ji
Eric Elmoznino
George Deane
Axel Constant
Jonathan Simon
Gaussian-process-based Bayesian optimization for neurostimulation interventions in rats
Léo Choinière
Rose Guay-Hottin
Rémi Picard
Numa Dancause