Portrait of Guillaume Lajoie

Guillaume Lajoie

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Mathematics and Statistics
Visiting Researcher, Google
Research Topics
Computational Neuroscience
Deep Learning
Dynamical Systems
Optimization
Recurrent Neural Networks
Representation Learning

Biography

Guillaume Lajoie is an Associate professor in the Department of Mathematics and Statistics at Université de Montréal and a Core Academic Member of Mila – Quebec Artificial Intelligence Institute. He holds a Canada-CIFAR AI Research Chair, and a Canada Research Chair (CRC) in Neural Computation and Interfacing. He also holds a Health Research Scholar of Fonds de recherche du Québec.

Guillaume Lajoie was previously a postdoctoral fellow at the Max Planck Institute for Dynamics and Self-Organization in Germany and at the University of Washington’s Institute for Neuroengineering. He obtained his PhD from the Department of Applied Mathematics at the University of Washington (Seattle).

His research is positioned at the intersection of AI and Neuroscience where he develops tools to better understand mechanisms of intelligence common to both biological and artificial systems. His research group's contributions range from advances in multi-scale learning paradigms for large artificial systems, to applications in neurotechnology. Dr. Lajoie is actively involved in responsible AI development efforts, seeking to identify guidelines and best practices for use of AI in research and beyond.

Recent work has focused on the development of architectural inductive biases for information propagation in recurrent networks, as well as the development of algorithms and models for bidirectional brain-machine interface optimization.

Current Students

Independent visiting researcher
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Master's Research - Polytechnique Montréal
Principal supervisor :
Master's Research - Polytechnique Montréal
Principal supervisor :
Collaborating researcher - Western Washington University (faculty; assistant prof))
Principal supervisor :
Master's Research - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher - Université de Montréal
Postdoctorate - McGill University
Principal supervisor :
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - McGill University
Research Intern - Western Washington University
Co-supervisor :
PhD - Université de Montréal

Publications

LEAD: Min-Max Optimization from a Physical Perspective
Reyhane Askari Hemmat
Amartya Mitra
Adversarial formulations have rekindled interest in two-player min-max games. A central obstacle in the optimization of such games is the ro… (see more)tational dynamics that hinder their convergence. In this paper, we show that game optimization shares dynamic properties with particle systems subject to multiple forces, and one can leverage tools from physics to improve optimization dynamics. Inspired by the physical framework, we propose LEAD, an optimizer for min-max games. Next, using Lyapunov stability theory from dynamical systems as well as spectral analysis, we study LEAD’s convergence properties in continuous and discrete time settings for a class of quadratic min-max games to demonstrate linear convergence to the Nash equilibrium. Finally, we empirically evaluate our method on synthetic setups and CIFAR-10 image generation to demonstrate improvements in GAN training.
NEURAL MANIFOLDS AND GRADIENT-BASED ADAPTATION IN NEURAL-INTERFACE TASKS
Alexandre Payeur
Amy L. Orsborn
. Neural activity tends to reside on manifolds whose dimension is much lower than the dimension of the whole neural state space. Experiments… (see more) using brain-computer interfaces with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the hypothesis that external perturbations should produce different adaptation strategies depending on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM) triggered the slow emergence of new neural patterns underlying a much slower—and, without adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests that the time scale and the overall difficulty of the brain to adapt depend fundamentally on the structure of neural activity. Here, we used a simplified static Gaussian model to show that gradient-descent learning could explain the differences between adaptation to WM and OM perturbations. For small learning rates, we found that the adaptation speeds were different but the model eventually adapted to both perturbations. Moreover, sufficiently large learning rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to WM perturbations, in agreement with experiments. Adopting an incremental training protocol, as has been done in experiments, permitted a swift recovery of a full adaptation in the cases where OM perturbations were previously impossible to relearn. Finally, we also found that gradient descent was compatible with the reassociation mechanism on short adaptation time scales. Since gradient descent has many biologically plausible variants, our findings thus establish gradient-based learning as a plausible mechanism for adaptation under network-level constraints, with a central role for the learning rate.
NEURAL MANIFOLDS AND GRADIENT-BASED ADAPTATION IN NEURAL-INTERFACE TASKS
Alexandre Payeur
Amy L. Orsborn
. Neural activity tends to reside on manifolds whose dimension is much lower than the dimension of the whole neural state space. Experiments… (see more) using brain-computer interfaces with microelectrode arrays implanted in the motor cortex of nonhuman primates tested the hypothesis that external perturbations should produce different adaptation strategies depending on how “aligned” the perturbation is with respect to a pre-existing intrinsic manifold. On the one hand, perturbations within the manifold (WM) evoked fast reassociations of existing patterns for rapid adaptation. On the other hand, perturbations outside the manifold (OM) triggered the slow emergence of new neural patterns underlying a much slower—and, without adequate training protocols, inconsistent or virtually impossible—adaptation. This suggests that the time scale and the overall difficulty of the brain to adapt depend fundamentally on the structure of neural activity. Here, we used a simplified static Gaussian model to show that gradient-descent learning could explain the differences between adaptation to WM and OM perturbations. For small learning rates, we found that the adaptation speeds were different but the model eventually adapted to both perturbations. Moreover, sufficiently large learning rates could entirely prohibit adaptation to OM perturbations while preserving adaptation to WM perturbations, in agreement with experiments. Adopting an incremental training protocol, as has been done in experiments, permitted a swift recovery of a full adaptation in the cases where OM perturbations were previously impossible to relearn. Finally, we also found that gradient descent was compatible with the reassociation mechanism on short adaptation time scales. Since gradient descent has many biologically plausible variants, our findings thus establish gradient-based learning as a plausible mechanism for adaptation under network-level constraints, with a central role for the learning rate.
Author Correction: Gradient-based learning drives robust representations in recurrent neural networks by balancing compression and expansion
Maxwell J. Farrell
Stefano Recanatesi
Timothy Moore
Eric Todd SheaBrown
Rapidly Inferring Personalized Neurostimulation Parameters with Meta-Learning: A Case Study of Individualized Fiber Recruitment in Vagus Nerve Stimulation
Ximeng Mao
Yao-Chuan Chang
Stavros Zanos
Learning Shared Neural Manifolds from Multi-Subject FMRI Data
Jessie Huang
Je-chun Huang
Erica Lindsey Busch
Tom Wallenstein
Michal Gerasimiuk
Andrew Benz
Nicholas Turk-Browne
Smita Krishnaswamy
Functional magnetic resonance imaging (fMRI) data is collected in millions of noisy, redundant dimensions. To understand how different brain… (see more)s process the same stimulus, we aim to denoise the fMRI signal via a meaningful embedding space that captures the data's intrinsic structure as shared across brains. We assume that stimulus-driven responses share latent features common across subjects that are jointly discoverable. Previous approaches to this problem have relied on linear methods like principal component analysis and shared response modeling. We propose a neural network called MRMD-AE (manifold-regularized multiple- decoder, autoencoder) that learns a common embedding from multi-subject fMRI data while retaining the ability to decode individual responses. Our latent common space represents an extensible manifold (where untrained data can be mapped) and improves classification accuracy of stimulus features of unseen timepoints, as well as cross-subject translation of fMRI signals.
Dynamic compression and expansion in a classifying recurrent network
Matthew Farrell
Maxwell J. Farrell
Stefano Recanatesi
Timothy Moore
Eric Todd SheaBrown
Recordings of neural circuits in the brain reveal extraordinary dynamical richness and high variability. At the same time, dimensionality re… (see more)duction techniques generally uncover low-dimensional structures underlying these dynamics when tasks are performed. In general, it is still an open question what determines the dimensionality of activity in neural circuits, and what the functional role of this dimensionality in task learning is. In this work we probe these issues using a recurrent artificial neural network (RNN) model trained by stochastic gradient descent to discriminate inputs. The RNN family of models has recently shown promise in revealing principles behind brain function. Through simulations and mathematical analysis, we show how the dimensionality of RNN activity depends on the task parameters and evolves over time and over stages of learning. We find that common solutions produced by the network naturally compress dimensionality, while variability-inducing chaos can expand it. We show how chaotic networks balance these two factors to solve the discrimination task with high accuracy and good generalization properties. These findings shed light on mechanisms by which artificial neural networks solve tasks while forming compact representations that may generalize well.
On Neural Architecture Inductive Biases for Relational Tasks
Current deep learning approaches have shown good in-distribution generalization performance, but struggle with out-of-distribution generaliz… (see more)ation. This is especially true in the case of tasks involving abstract relations like recognizing rules in sequences, as we find in many intelligence tests. Recent work has explored how forcing relational representations to remain distinct from sensory representations, as it seems to be the case in the brain, can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by 'partitioned' representations of relations and sensory details, and how this inductive bias can help recompose learned relational structure in newly encountered settings. We introduce a simple architecture based on similarity scores which we name Compositional Relational Network (CoRelNet). Using this model, we investigate a series of inductive biases that ensure abstract relations are learned and represented distinctly from sensory data, and explore their effects on out-of-distribution generalization for a series of relational psychophysics tasks. We find that simple architectural choices can outperform existing models in out-of-distribution generalization. Together, these results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing out-of-distribution relational computations.
Performance-gated deliberation: A context-adapted strategy in which urgency is opportunity cost
Maximilian Puelma Touzel
Paul Cisek
Finding the right amount of deliberation, between insufficient and excessive, is a hard decision making problem that depends on the value we… (see more) place on our time. Average-reward, putatively encoded by tonic dopamine, serves in existing reinforcement learning theory as the opportunity cost of time, including deliberation time. Importantly, this cost can itself vary with the environmental context and is not trivial to estimate. Here, we propose how the opportunity cost of deliberation can be estimated adaptively on multiple timescales to account for non-stationary contextual factors. We use it in a simple decision-making heuristic based on average-reward reinforcement learning (AR-RL) that we call Performance-Gated Deliberation (PGD). We propose PGD as a strategy used by animals wherein deliberation cost is implemented directly as urgency, a previously characterized neural signal effectively controlling the speed of the decision-making process. We show PGD outperforms AR-RL solutions in explaining behaviour and urgency of non-human primates in a context-varying random walk prediction task and is consistent with relative performance and urgency in a context-varying random dot motion task. We make readily testable predictions for both neural activity and behaviour.
Performance-gated deliberation: A context-adapted strategy in which urgency is opportunity cost
Maximilian Puelma Touzel
Paul Cisek
From Points to Functions: Infinite-dimensional Representations in Diffusion Models
Sarthak Mittal
Stefan Bauer
Arash Mehrjou
Diffusion-based generative models learn to iteratively transfer unstructured noise to a complex target distribution as opposed to Generative… (see more) Adversarial Networks (GANs) or the decoder of Variational Autoencoders (VAEs) which produce samples from the target distribution in a single step. Thus, in diffusion models every sample is naturally connected to a random trajectory which is a solution to a learned stochastic differential equation (SDE). Generative models are only concerned with the final state of this trajectory that delivers samples from the desired distribution. Abstreiter et. al showed that these stochastic trajectories can be seen as continuous filters that wash out information along the way. Consequently, it is reasonable to ask if there is an intermediate time step at which the preserved information is optimal for a given downstream task. In this work, we show that a combination of information content from different time steps gives a strictly better representation for the downstream task. We introduce an attention and recurrence based modules that ``learn to mix'' information content of various time-steps such that the resultant representation leads to superior performance in downstream tasks.
Inductive Biases for Relational Tasks
Current deep learning approaches have shown good in-distribution performance but struggle in out-of-distribution settings. This is especiall… (see more)y true in the case of tasks involving abstract relations like recognizing rules in sequences, as required in many intelligence tests. In contrast, our brains are remarkably flexible at such tasks, an attribute that is likely linked to anatomical constraints on computations. Inspired by this, recent work has explored how enforcing that relational representations remain distinct from sensory representations can help artificial systems. Building on this work, we further explore and formalize the advantages afforded by ``partitioned'' representations of relations and sensory details. We investigate inductive biases that ensure abstract relations are learned and represented distinctly from sensory data across several neural network architectures and show that they outperform existing architectures on out-of-distribution generalization for various relational tasks. These results show that partitioning relational representations from other information streams may be a simple way to augment existing network architectures' robustness when performing relational computations.