Portrait of Guillaume Lajoie

Guillaume Lajoie

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Université de Montréal, Department of Mathematics and Statistics
Visiting Researcher, Google
Research Topics
AI for Science
AI in Health
Cognition
Computational Neuroscience
Deep Learning
Dynamical Systems
Optimization
Reasoning
Recurrent Neural Networks
Representation Learning

Biography

Guillaume Lajoie is an Associate professor in the Department of Mathematics and Statistics at Université de Montréal and a Core Academic Member of Mila – Quebec Artificial Intelligence Institute. He holds a Canada-CIFAR AI Research Chair, and a Canada Research Chair (CRC) in Neural Computation and Interfacing.

His research is positioned at the intersection of AI and Neuroscience where he develops tools to better understand mechanisms of intelligence common to both biological and artificial systems. His research group's contributions range from advances in multi-scale learning paradigms for large artificial systems, to applications in neurotechnology. Dr. Lajoie is actively involved in responsible AI development efforts, seeking to identify guidelines and best practices for use of AI in research and beyond.

Current Students

Collaborating researcher - ETH Zurich
Independent visiting researcher
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Research Intern - McGill University
Principal supervisor :
Master's Research - Polytechnique Montréal
Principal supervisor :
Collaborating researcher - Western Washington University (faculty; assistant prof))
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
Collaborating researcher
Principal supervisor :
Collaborating Alumni - McGill University
Principal supervisor :
Master's Research - Université de Montréal
Collaborating Alumni - Université de Montréal
Master's Research - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
Co-supervisor :
Independent visiting researcher - Champalimeau Institute for the Unknown
Postdoctorate - Université de Montréal
Research Intern - Western Washington University
Co-supervisor :
PhD - Université de Montréal

Publications

Discrete, compositional, and symbolic representations through attractor dynamics
Andrew Nam
Eric Elmoznino
Nikolay Malkin
Chen Sun
Compositionality is an important feature of discrete symbolic systems, such as language and programs, as it enables them to have infinite ca… (see more)pacity despite a finite symbol set. It serves as a useful abstraction for reasoning in both cognitive science and in AI, yet the interface between continuous and symbolic processing is often imposed by fiat at the algorithmic level, such as by means of quantization or a softmax sampling step. In this work, we explore how discretization could be implemented in a more neurally plausible manner through the modeling of attractor dynamics that partition the continuous representation space into basins that correspond to sequences of symbols. Building on established work in attractor networks and introducing novel training methods, we show that imposing structure in the symbolic space can produce compositionality in the attractor-supported representation space of rich sensory inputs. Lastly, we argue that our model exhibits the process of an information bottleneck that is thought to play a role in conscious experience, decomposing the rich information of a sensory input into stable components encoding symbolic information.
Amortizing intractable inference in large language models
Edward J Hu
Moksh J. Jain
Eric Elmoznino
Younesse Kaddar
Nikolay Malkin
Autoregressive large language models (LLMs) compress knowledge from their training data through next-token conditional distributions. This l… (see more)imits tractable querying of this knowledge to start-to-end autoregressive sampling. However, many tasks of interest -- including sequence continuation, infilling, and other forms of constrained generation -- involve sampling from intractable posterior distributions. We address this limitation by using amortized Bayesian inference to sample from these intractable posteriors. Such amortization is algorithmically achieved by fine-tuning LLMs via diversity-seeking reinforcement learning algorithms: generative flow networks (GFlowNets). We empirically demonstrate that this distribution-matching paradigm of LLM fine-tuning can serve as an effective alternative to maximum-likelihood training and reward-maximizing policy optimization. As an important application, we interpret chain-of-thought reasoning as a latent variable modeling problem and demonstrate that our approach enables data-efficient adaptation of LLMs to tasks that require multi-step rationalization and tool use.
A Unified, Scalable Framework for Neural Population Decoding
Mehdi Azabou
Vinam Arora
Venkataramana Ganesh
Ximeng Mao
Santosh B Nachimuthu
Michael Jacob Mendelson
Eva L Dyer
Our ability to use deep learning approaches to decipher neural activity would likely benefit from greater scale, in terms of both the model … (see more)size and the datasets. However, the integration of many neural recordings into one unified model is challenging, as each recording contains the activity of different neurons from different individual animals. In this paper, we introduce a training framework and architecture designed to model the population dynamics of neural activity across diverse, large-scale neural recordings. Our method first tokenizes individual spikes within the dataset to build an efficient representation of neural events that captures the fine temporal structure of neural activity. We then employ cross-attention and a PerceiverIO backbone to further construct a latent tokenization of neural population activities. Utilizing this architecture and training framework, we construct a large-scale multi-session model trained on large datasets from seven nonhuman primates, spanning over 158 different sessions of recording from over 27,373 neural units and over 100 hours of recordings. In a number of different tasks, we demonstrate that our pretrained model can be rapidly adapted to new, unseen sessions with unspecified neuron correspondence, enabling few-shot performance with minimal labels. This work presents a powerful new approach for building deep learning tools to analyze neural data and stakes out a clear path to training at scale for neural decoding models.
Online Bayesian Optimization of Nerve Stimulation
Lorenz Wernisch
Tristan Edwards
Antonin Berthon
Olivier Tessier-Lariviere
Elvijs Sarkans
Myrta Stoukidi
Pascal Fortier-Poisson
Max Pinkney
Michael Thornton
Catherine Hanley
Susannah Lee
Joel Jennings
Ben Appleton
Philip Garsed
Bret Patterson
Buttinger Will
Samuel Gonshaw
Matjaž Jakopec
Sudhakaran Shunmugam
Jorin Mamen … (see 4 more)
Aleksi Tukiainen
Oliver Armitage
Emil Hewage
Flexible Phase Dynamics for Bio-Plausible Contrastive Learning
Ezekiel Williams
Colin Bredenberg
Exploring Exchangeable Dataset Amortization for Bayesian Posterior Inference
Sarthak Mittal
Niels Leif Bracher
Priyank Jaini
Marcus A Brubaker
Bayesian inference provides a natural way of incorporating uncertainties and different underlying theories when making predictions or analyz… (see more)ing complex systems. However, it requires computationally expensive routines for approximation, which have to be re-run when new data is observed and are thus infeasible to efficiently scale and reuse. In this work, we look at the problem from the perspective of amortized inference to obtain posterior parameter distributions for known probabilistic models. We propose a neural network-based approach that can handle exchangeable observations and amortize over datasets to convert the problem of Bayesian posterior inference into a single forward pass of a network. Our empirical analyses explore various design choices for amortized inference by comparing: (a) our proposed variational objective with forward KL minimization, (b) permutation-invariant architectures like Transformers and DeepSets, and (c) parameterizations of posterior families like diagonal Gaussian and Normalizing Flows. Through our experiments, we successfully apply amortization techniques to estimate the posterior distributions for different domains solely through inference.
Learning to Optimize with Recurrent Hierarchical Transformers
Abhinav Moudgil
Boris Knyazev
conn2res: A toolbox for connectome-based reservoir computing
Laura E. Suárez
Agoston Mihalik
Filip Milisav
Kenji Marshall
Mingze Li
Petra E. Vértes
Bratislav Mišić
Autonomous optimization of neuroprosthetic stimulation parameters that drive the motor cortex and spinal cord outputs in rats and monkeys
Rose Guay Hottin
Sandrine L. Côté
Elena Massai
Léo Choinière
Uzay Macar
Samuel Laferrière
Parikshat Sirpal
Stephan Quessy
Marina Martinez
Numa Dancause
Multi-view manifold learning of human brain state trajectories
Erica Lindsey Busch
Je-chun Huang
Andrew Benz
Tom Wallenstein
Nicholas Turk-Browne
Transfer Entropy Bottleneck: Learning Sequence to Sequence Information Transfer
Damjan Kalajdzievski
Ximeng Mao
Pascal Fortier-Poisson
When presented with a data stream of two statistically dependent variables, predicting the future of one of the variables (the target stream… (see more)) can benefit from information about both its history and the history of the other variable (the source stream). For example, fluctuations in temperature at a weather station can be predicted using both temperatures and barometric readings. However, a challenge when modelling such data is that it is easy for a neural network to rely on the greatest joint correlations within the target stream, which may ignore a crucial but small information transfer from the source to the target stream. As well, there are often situations where the target stream may have previously been modelled independently and it would be useful to use that model to inform a new joint model. Here, we develop an information bottleneck approach for conditional learning on two dependent streams of data. Our method, which we call Transfer Entropy Bottleneck (TEB), allows one to learn a model that bottlenecks the directed information transferred from the source variable to the target variable, while quantifying this information transfer within the model. As such, TEB provides a useful new information bottleneck approach for modelling two statistically dependent streams of data in order to make predictions about one of them.
Use of Invasive Brain-Computer Interfaces in Pediatric Neurosurgery: Technical and Ethical Considerations
David Bergeron
Christian Iorio-Morin
Nathalie Orr Gaucher
Éric Racine
Alexander G. Weil