Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Classical psychedelics induce complex visual hallucinations in humans, generating percepts that are co-herent at a low level, but which have… (see more) surreal, dream-like qualities at a high level. While there are many hypotheses as to how classical psychedelics could induce these effects, there are no concrete mechanistic models that capture the variety of observed effects in humans, while remaining consistent with the known pharmacological effects of classical psychedelics on neural circuits. In this work, we propose the “oneirogen hypothesis”, which posits that the perceptual effects of classical psychedelics are a result of their pharmacological actions inducing neural activity states that truly are more similar to dream-like states. We simulate classical psychedelics’ effects via manipulating neural network models trained on perceptual tasks with the Wake-Sleep algorithm. This established machine learning algorithm leverages two activity phases, a perceptual phase (wake) where sensory inputs are encoded, and a generative phase (dream) where the network internally generates activity consistent with stimulus-evoked responses. We simulate the action of psychedelics by partially shifting the model to the ‘Sleep’ state, which entails a greater influence of top-down connections, in line with the impact of psychedelics on apical dendrites. The effects resulting from this manipulation capture a number of experimentally observed phenomena including the emergence of hallucinations, increases in stimulus-conditioned variability, and large increases in synaptic plasticity. We further provide a number of testable predictions which could be used to validate or invalidate our oneirogen hypothesis.
During periods of quiescence, such as sleep, neural activity in many brain circuits resembles that observed during periods of task engagemen… (see more)t. However, the precise conditions under which task-optimized networks can autonomously reactivate the same network states responsible for online behavior is poorly understood. In this study, we develop a mathematical framework that outlines sufficient conditions for the emergence of neural reactivation in circuits that encode features of smoothly varying stimuli. We demonstrate mathematically that noisy recurrent networks optimized to track environmental state variables using change-based sensory information naturally develop denoising dynamics, which, in the absence of input, cause the network to revisit state configurations observed during periods of online activity. We validate our findings using numerical experiments on two canonical neuroscience tasks: spatial position estimation based on self-motion cues, and head direction estimation based on angular velocity cues. Overall, our work provides theoretical support for modeling offline reactivation as an emergent consequence of task optimization in noisy neural circuits.
During periods of quiescence, such as sleep, neural activity in many brain circuits resembles that observed during periods of task engagemen… (see more)t. However, the precise conditions under which task-optimized networks can autonomously reactivate the same network states responsible for online behavior are poorly understood. In this study, we develop a mathematical framework that outlines sufficient conditions for the emergence of neural reactivation in circuits that encode features of smoothly varying stimuli. We demonstrate mathematically that noisy recurrent networks optimized to track environmental state variables using change-based sensory information naturally develop denoising dynamics, which, in the absence of input, cause the network to revisit state configurations observed during periods of online activity. We validate our findings using numerical experiments on two canonical neuroscience tasks: spatial position estimation based on self-motion cues, and head direction estimation based on angular velocity cues. Overall, our work provides theoretical support for modeling offline reactivation as an emergent consequence of task optimization in noisy neural circuits.
2024-01-01
International Conference on Learning Representations (published)