Portrait of Guillaume Dumas

Guillaume Dumas

Associate Academic Member
Associate Professor, Université de Montréal, Department of Psychiatry and Addiction
Adjunct Professor, McGill University, Department of Psychiatry
Research Topics
Computational Biology
Computational Neuroscience
Deep Learning
Dynamical Systems
Machine Learning Theory
Medical Machine Learning
Reinforcement Learning

Biography

Guillaume Dumas is an associate professor of computational psychiatry in the Faculty of Medicine, Université de Montréal, and principal investigator in the Precision Psychiatry and Social Physiology laboratory at the Centre hospitalier universitaire (CHU) Sainte-Justine Research Centre. He holds the IVADO professorship for AI in Mental Health, and the Fonds de recherche du Québec - Santé (FRQS) J1 in AI and Digital Health. In 2023, Dumas was recognized as a CIFAR Azrieli Global Scholar – Brain, Mind, and Consciousness program, and nominated as a Future Leader in Canadian Brain Research by the Brain Canada Foundation.

Dumas was previously a permanent researcher in neuroscience and computational biology at the Institut Pasteur (Paris). Before that, he was a postdoctoral fellow at the Center for Complex Systems and Brain Sciences (Florida Atlanta University). He holds an engineering degree in advanced engineering and computer science (École Centrale Paris), two MSc degrees (theoretical physics, Paris-Saclay University; cognitive science, ENS/EHESS/Paris 5), and a PhD in cognitive neuroscience (Sorbonne University).

The goal of his research is to cross-fertilize AI/ML, cognitive neuroscience and digital medicine through an interdisciplinary program with two main axes:

- AI/ML for Mental Health, which aims to create new algorithms to investigate the development of human cognitive architecture and deliver personalized medicine in neuropsychiatry using data from genomes to smartphones.

- Social Neuroscience for AI/ML, which translates basic brain research and dynamical systems formalism into neurocomputational and machine learning hybrid models (NeuroML) and machines with social learning abilities (Social NeuroAI & HMI).

Current Students

Master's Research - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal

Publications

LLMs and Personalities: Inconsistencies Across Scales
Tosato Tommaso
Mahmood Hegazy
David Lemay
Mohammed Abukalam
This study investigates the application of human psychometric assessments to large language models (LLMs) to examine their consistency and m… (see more)alleability in exhibiting personality traits. We administered the Big Five Inventory (BFI) and the Eysenck Personality Questionnaire-Revised (EPQ-R) to various LLMs across different model sizes and persona prompts. Our results reveal substantial variability in responses due to question order shuffling, challenging the notion of a stable LLM "personality." Larger models demonstrated more consistent responses, while persona prompts significantly influenced trait scores. Notably, the assistant persona led to more predictable scaling, with larger models exhibiting more socially desirable and less variable traits. In contrast, non-conventional personas displayed unpredictable behaviors, sometimes extending personality trait scores beyond the typical human range. These findings have important implications for understanding LLM behavior under different conditions and reflect on the consequences of scaling.
LLMs and Personalities: Inconsistencies Across Scales
Tosato Tommaso
Mahmood Hegazy
David Lemay
Mohammed Abukalam
This study investigates the application of human psychometric assessments to large language models (LLMs) to examine their consistency and m… (see more)alleability in exhibiting personality traits. We administered the Big Five Inventory (BFI) and the Eysenck Personality Questionnaire-Revised (EPQ-R) to various LLMs across different model sizes and persona prompts. Our results reveal substantial variability in responses due to question order shuffling, challenging the notion of a stable LLM "personality." Larger models demonstrated more consistent responses, while persona prompts significantly influenced trait scores. Notably, the assistant persona led to more predictable scaling, with larger models exhibiting more socially desirable and less variable traits. In contrast, non-conventional personas displayed unpredictable behaviors, sometimes extending personality trait scores beyond the typical human range. These findings have important implications for understanding LLM behavior under different conditions and reflect on the consequences of scaling.
Long-term outcomes of critically ill patients with hematological malignancies: what is the impact of the coronavirus disease 2019 pandemic? Author's reply
Laveena Munshi
Sangeeta Mehta
Diagnostic tests for infections in critically ill immunocompromised patients
Adrien Joseph
Lara Zafrani
Oxygen thresholds in critically ill patients: need for personalized targets. Author's reply.
Laveena Munshi
Oxygen thresholds in critically ill patients: need for personalized targets. Author's reply.
Laveena Munshi
Scalable Approaches for a Theory of Many Minds
Maximilian Puelma Touzel
Amin Memarian
Matthew D Riemer
Andrei Mircea
Andrew Robert Williams
Elin Ahlstrand
Lucas Lehnert
Rupali Bhati
A major challenge as we move towards building agents for real-world problems, which could involve a massive number of human and/or machine a… (see more)gents, is that we must learn to reason about the behavior of these many other agents. In this paper, we consider the problem of scaling a predictive Theory of Mind (ToM) model to a very large number of interacting agents with a fixed computational budget. Motivated by the limited diversity of agent types, existing approaches to scalable TOM learn versatile single-agent representations for quickly adapting to new agents encountered sequentially. We consider the more general setting that many agents are observed in parallel and formulate the corresponding Theory of Many Minds (ToMM) problem of estimating the joint policy. We frame the scaling behavior of solutions in terms of parameter sharing schemes and in particular propose two parameter-free architectural features that endow models with the ability to exploit action correlations: encoding a multi-agent context, and decoding through an abstracted joint action space. The increased predictive capabilities that have come with foundation models have made it easier to imagine the possibility of using these models to make simulations that imitate the behavior of many agents within complex real-world systems. Being able to perform these simulations in a general-purpose way would not only help make more capable agents, it also would be a very useful capability for applications in social science, political science, and economics.
Lost in Translation: The Algorithmic Gap Between LMs and the Brain
Tosato Tommaso
Tikeng Notsawo Pascal Junior
Helbling Saskia
Language Models (LMs) have achieved impressive performance on various linguistic tasks, but their relationship to human language processing … (see more)in the brain remains unclear. This paper examines the gaps and overlaps between LMs and the brain at different levels of analysis, emphasizing the importance of looking beyond input-output behavior to examine and compare the internal processes of these systems. We discuss how insights from neuroscience, such as sparsity, modularity, internal states, and interactive learning, can inform the development of more biologically plausible language models. Furthermore, we explore the role of scaling laws in bridging the gap between LMs and human cognition, highlighting the need for efficiency constraints analogous to those in biological systems. By developing LMs that more closely mimic brain function, we aim to advance both artificial intelligence and our understanding of human cognition.
295. Rare Variant Genetic Architecture of the Human Cortical MRI Phenotypes in General Population
Kuldeep Kumar
Sayeh Kazem
Zhijie Liao
Jakub Kopal
Guillaume Huguet
Thomas Renne
Martineau Jean-Louis
Zhe Xie
Zohra Saci
Laura Almasy
David C. Glahn
Tomas Paus
Carrie Bearden
Paul Thompson
Richard A.I. Bethlehem
Varun Warrier
Sébastien Jacquemont
Effects of gene dosage on cognitive ability: A function-based association study across brain and non-brain processes
Guillaume Huguet
Thomas Renne
Cécile Poulain
Alma Dubuc
Kuldeep Kumar
Sayeh Kazem
Worrawat Engchuan
Omar Shanta
Elise Douard
Catherine Proulx
Martineau Jean-Louis
Zohra Saci
Josephine Mollon
Laura Schultz
Emma E M Knowles
Simon R. Cox
David Porteous
Gail Davies
Paul Redmond
Sarah E. Harris … (see 10 more)
Gunter Schumann
Aurélie Labbe
Zdenka Pausova
Tomas Paus
Stephen W Scherer
Jonathan Sebat
Laura Almasy
David C. Glahn
Sébastien Jacquemont
Genomic Copy Number Variants (CNVs) that increase risk for neurodevelopmental disorders are also associated with lower cognitive ability in … (see more)general population cohorts. Studies have focussed on a small set of recurrent CNVs, but burden analyses suggested that the vast majority of CNVs affecting cognitive ability are too rare to reach variant-level association. As a result, the full range of gene-dosage-sensitive biological processes linked to cognitive ability remains unknown. To investigate this issue, we identified all CNVs >50 kilobases in 258k individuals from 6 general population cohorts with assessments of general cognitive abilities. We performed a CNV-GWAS and functional burden analyses, which tested 6502 gene-sets defined by tissue and cell-type transcriptomics as well as gene ontology disrupted by all rare coding CNVs. CNV-GWAS identified a novel duplication at 2q12.3 associated with higher performance in cognitive ability. Among the 864 gene-sets associated with cognitive ability, only 11% showed significant effects for both deletions and duplication. Accordingly, we systematically observed negative correlations between deletion and duplication effect sizes across all levels of biological observations. We quantified the preferential effects of deletions versus duplication using tagDS, a new normalized metric. Cognitive ability was preferentially affected by cortical, presynaptic, and negative-regulation gene-sets when duplicated. In contrast, preferential effects of deletions were observed for subcortical, post-synaptic, and positive-regulation gene-sets. A large proportion of gene-sets assigned to non-brain organs were associated with cognitive ability due to low tissue specificity genes, which were associated with higher sensitive to haploinsufficiency. Overall, most biological functions associated with cognitive ability are divided into those sensitive to either deletion or duplications.
Effects of gene dosage on cognitive ability: A function-based association study across brain and non-brain processes
Guillaume Huguet
Thomas Renne
Cécile Poulain
Alma Dubuc
Kuldeep Kumar
Sayeh Kazem
Worrawat Engchuan
Omar Shanta
Elise Douard
Catherine Proulx
Martineau Jean-Louis
Zohra Saci
Josephine Mollon
Laura Schultz
Emma E M Knowles
Simon R. Cox
David Porteous
Gail Davies
Paul Redmond
Sarah E. Harris … (see 10 more)
Gunter Schumann
Aurélie Labbe
Zdenka Pausova
Tomas Paus
Stephen W Scherer
Jonathan Sebat
Laura Almasy
David C. Glahn
Sébastien Jacquemont
Genomic Copy Number Variants (CNVs) that increase risk for neurodevelopmental disorders are also associated with lower cognitive ability in … (see more)general population cohorts. Studies have focussed on a small set of recurrent CNVs, but burden analyses suggested that the vast majority of CNVs affecting cognitive ability are too rare to reach variant-level association. As a result, the full range of gene-dosage-sensitive biological processes linked to cognitive ability remains unknown. To investigate this issue, we identified all CNVs >50 kilobases in 258k individuals from 6 general population cohorts with assessments of general cognitive abilities. We performed a CNV-GWAS and functional burden analyses, which tested 6502 gene-sets defined by tissue and cell-type transcriptomics as well as gene ontology disrupted by all rare coding CNVs. CNV-GWAS identified a novel duplication at 2q12.3 associated with higher performance in cognitive ability. Among the 864 gene-sets associated with cognitive ability, only 11% showed significant effects for both deletions and duplication. Accordingly, we systematically observed negative correlations between deletion and duplication effect sizes across all levels of biological observations. We quantified the preferential effects of deletions versus duplication using tagDS, a new normalized metric. Cognitive ability was preferentially affected by cortical, presynaptic, and negative-regulation gene-sets when duplicated. In contrast, preferential effects of deletions were observed for subcortical, post-synaptic, and positive-regulation gene-sets. A large proportion of gene-sets assigned to non-brain organs were associated with cognitive ability due to low tissue specificity genes, which were associated with higher sensitive to haploinsufficiency. Overall, most biological functions associated with cognitive ability are divided into those sensitive to either deletion or duplications.
Effects of gene dosage on cognitive ability: A function-based association study across brain and non-brain processes
Guillaume Huguet
Thomas Renne
Cécile Poulain
Alma Dubuc
Kuldeep Kumar
Sayeh Kazem
Worrawat Engchuan
Omar Shanta
Elise Douard
Catherine Proulx
Martineau Jean-Louis
Zohra Saci
Josephine Mollon
Laura Schultz
Emma E M Knowles
Simon R. Cox
David Porteous
Gail Davies
Paul Redmond
Sarah E. Harris … (see 10 more)
Gunter Schumann
Aurélie Labbe
Zdenka Pausova
Tomas Paus
Stephen W Scherer
Jonathan Sebat
Laura Almasy
David C. Glahn
Sébastien Jacquemont
Genomic Copy Number Variants (CNVs) that increase risk for neurodevelopmental disorders are also associated with lower cognitive ability in … (see more)general population cohorts. Studies have focussed on a small set of recurrent CNVs, but burden analyses suggested that the vast majority of CNVs affecting cognitive ability are too rare to reach variant-level association. As a result, the full range of gene-dosage-sensitive biological processes linked to cognitive ability remains unknown. To investigate this issue, we identified all CNVs >50 kilobases in 258k individuals from 6 general population cohorts with assessments of general cognitive abilities. We performed a CNV-GWAS and functional burden analyses, which tested 6502 gene-sets defined by tissue and cell-type transcriptomics as well as gene ontology disrupted by all rare coding CNVs. CNV-GWAS identified a novel duplication at 2q12.3 associated with higher performance in cognitive ability. Among the 864 gene-sets associated with cognitive ability, only 11% showed significant effects for both deletions and duplication. Accordingly, we systematically observed negative correlations between deletion and duplication effect sizes across all levels of biological observations. We quantified the preferential effects of deletions versus duplication using tagDS, a new normalized metric. Cognitive ability was preferentially affected by cortical, presynaptic, and negative-regulation gene-sets when duplicated. In contrast, preferential effects of deletions were observed for subcortical, post-synaptic, and positive-regulation gene-sets. A large proportion of gene-sets assigned to non-brain organs were associated with cognitive ability due to low tissue specificity genes, which were associated with higher sensitive to haploinsufficiency. Overall, most biological functions associated with cognitive ability are divided into those sensitive to either deletion or duplications.