Portrait of Blake Richards

Blake Richards

Canada CIFAR AI Chair
Associate Professor, McGill University, School of Computer Science and Department of Neurology and Neurosurgery
Google
Research Topics
Computational Neuroscience
Generative Models
Reinforcement Learning
Representation Learning

Biography

Blake Richards is Research Scientist Manager with the Paradigms of Intelligence team at Google, and an Associate Professor in the School of Computer Science and Department of Neurology and Neurosurgery at McGill University. He is also a Core Faculty Member at Mila.

Richards’ research lies at the intersection of neuroscience and AI. His laboratory investigates universal principles of intelligence that apply to both natural and artificial agents.

He has received several awards for his work, including the NSERC Arthur B. McDonald Fellowship in 2022, the Canadian Association for Neuroscience Young Investigator Award in 2019, and a Canada CIFAR AI Chair in 2018. Richards was a Banting Postdoctoral Fellow at SickKids Hospital from 2011 to 2013.

He obtained his PhD in neuroscience from the University of Oxford in 2010, and his BSc in cognitive science and AI from the University of Toronto in 2004.

Current Students

Postdoctorate - McGill University
Postdoctorate - Université de Montréal
Principal supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Independent visiting researcher - NYU
PhD - McGill University
Principal supervisor :
PhD - McGill University
Collaborating Alumni - McGill University
Undergraduate - McGill University
PhD - McGill University
Postdoctorate - McGill University
Co-supervisor :
Independent visiting researcher - Université de Montréal
Collaborating Alumni - McGill University
PhD - McGill University
PhD - McGill University
PhD - McGill University
Postdoctorate - McGill University
PhD - McGill University
PhD - McGill University
PhD - McGill University
PhD - Université de Montréal
Principal supervisor :
Collaborating Alumni - McGill University
Independent visiting researcher - Université de Montréal
PhD - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Independent visiting researcher - NA
Master's Research - McGill University
PhD - McGill University
Master's Research - McGill University
Co-supervisor :
Independent visiting researcher - York University
PhD - Concordia University
Principal supervisor :

Publications

Responses to Pattern-Violating Visual Stimuli Evolve Differently Over Days in Somata and Distal Apical Dendrites
Colleen J Gillon
Jason E. Pina
Jérôme A. Lecoq
Ruweida Ahmed
Yazan N. Billeh
Shiella Caldejon
Peter Groblewski
Timothy M. Henley
India Kato
Eric Lee
Jennifer Luviano
Kyla Mace
Chelsea Nayan
Thuyanh V. Nguyen
Kat North
Jed Perkins
Sam Seid
Matthew T. Valley
Ali Williford
Timothy P. Lillicrap
Scientists have long conjectured that the neocortex learns patterns in sensory data to generate top-down predictions of upcoming stimuli. In… (see more) line with this conjecture, different responses to pattern-matching vs pattern-violating visual stimuli have been observed in both spiking and somatic calcium imaging data. However, it remains unknown whether these pattern-violation signals are different between the distal apical dendrites, which are heavily targeted by top-down signals, and the somata, where bottom-up information is primarily integrated. Furthermore, it is unknown how responses to pattern-violating stimuli evolve over time as an animal gains more experience with them. Here, we address these unanswered questions by analyzing responses of individual somata and dendritic branches of layer 2/3 and layer 5 pyramidal neurons tracked over multiple days in primary visual cortex of awake, behaving female and male mice. We use sequences of Gabor patches with patterns in their orientations to create pattern-matching and pattern-violating stimuli, and two-photon calcium imaging to record neuronal responses. Many neurons in both layers show large differences between their responses to pattern-matching and pattern-violating stimuli. Interestingly, these responses evolve in opposite directions in the somata and distal apical dendrites, with somata becoming less sensitive to pattern-violating stimuli and distal apical dendrites more sensitive. These differences between the somata and distal apical dendrites may be important for hierarchical computation of sensory predictions and learning, since these two compartments tend to receive bottom-up and top-down information, respectively.
The feature landscape of visual cortex
Rudi Tong
Ronan da Silva
James Wilsenach
Stuart Trenholm
Understanding computations in the visual system requires a characterization of the distinct feature preferences of neurons in different visu… (see more)al cortical areas. However, we know little about how feature preferences of neurons within a given area relate to that area’s role within the global organization of visual cortex. To address this, we recorded from thousands of neurons across six visual cortical areas in mouse and leveraged generative AI methods combined with closed-loop neuronal recordings to identify each neuron’s visual feature preference. First, we discovered that the mouse’s visual system is globally organized to encode features in a manner invariant to the types of image transformations induced by self-motion. Second, we found differences in the visual feature preferences of each area and that these differences generalized across animals. Finally, we observed that a given area’s collection of preferred stimuli (‘own-stimuli’) drive neurons from the same area more effectively through their dynamic range compared to preferred stimuli from other areas (‘other-stimuli’). As a result, feature preferences of neurons within an area are organized to maximally encode differences among own-stimuli while remaining insensitive to differences among other-stimuli. These results reveal how visual areas work together to efficiently encode information about the external world.
Contrastive Retrospection: honing in on critical steps for rapid learning and generalization in RL
In real life, success is often contingent upon multiple critical steps that are distant in time from each other and from the final reward. T… (see more)hese critical steps are challenging to identify with traditional reinforcement learning (RL) methods that rely on the Bellman equation for credit assignment. Here, we present a new RL algorithm that uses offline contrastive learning to hone in on these critical steps. This algorithm, which we call Contrastive Retrospection (ConSpec), can be added to any existing RL algorithm. ConSpec learns a set of prototypes for the critical steps in a task by a novel contrastive loss and delivers an intrinsic reward when the current state matches one of the prototypes. The prototypes in ConSpec provide two key benefits for credit assignment: (i) They enable rapid identification of all the critical steps. (ii) They do so in a readily interpretable manner, enabling out-of-distribution generalization when sensory features are altered. Distinct from other contemporary RL approaches to credit assignment, ConSpec takes advantage of the fact that it is easier to retrospectively identify the small set of steps that success is contingent upon (and ignoring other states) than it is to prospectively predict reward at every taken step. ConSpec greatly improves learning in a diverse set of RL tasks. The code is available at the link: https://github.com/sunchipsster1/ConSpec
Learning better with Dale’s Law: A Spectral Perspective
A Unified, Scalable Framework for Neural Population Decoding
Mehdi Azabou
Vinam Arora
Venkataramana Ganesh
Santosh B Nachimuthu
Michael Jacob Mendelson
Eva L Dyer
Our ability to use deep learning approaches to decipher neural activity would likely benefit from greater scale, in terms of both the model … (see more)size and the datasets. However, the integration of many neural recordings into one unified model is challenging, as each recording contains the activity of different neurons from different individual animals. In this paper, we introduce a training framework and architecture designed to model the population dynamics of neural activity across diverse, large-scale neural recordings. Our method first tokenizes individual spikes within the dataset to build an efficient representation of neural events that captures the fine temporal structure of neural activity. We then employ cross-attention and a PerceiverIO backbone to further construct a latent tokenization of neural population activities. Utilizing this architecture and training framework, we construct a large-scale multi-session model trained on large datasets from seven nonhuman primates, spanning over 158 different sessions of recording from over 27,373 neural units and over 100 hours of recordings. In a number of different tasks, we demonstrate that our pretrained model can be rapidly adapted to new, unseen sessions with unspecified neuron correspondence, enabling few-shot performance with minimal labels. This work presents a powerful new approach for building deep learning tools to analyze neural data and stakes out a clear path to training at scale for neural decoding models.
The neuroconnectionist research programme
Adrien C. Doerig
R. Sommers
Katja Seeliger
J. Ismael
Grace W. Lindsay
Konrad Paul Kording
Talia Konkle
M. Gerven
Nikolaus Kriegeskorte
Tim Kietzmann
Responses of pyramidal cell somata and apical dendrites in mouse visual cortex over multiple days
Colleen J Gillon
Jérôme A. Lecoq
Jason E. Pina
Ruweida Ahmed
Yazan N. Billeh
Shiella Caldejon
Peter Groblewski
Timothy M. Henley
India Kato
Eric Lee
Jennifer Luviano
Kyla Mace
Chelsea Nayan
Thuyanh V. Nguyen
Kat North
Jed Perkins
Sam Seid
Matthew T. Valley
Ali Williford
Timothy P. Lillicrap
Responses of pyramidal cell somata and apical dendrites in mouse visual cortex over multiple days
Colleen J Gillon
Jérôme A. Lecoq
Jason E. Pina
Ruweida Ahmed
Yazan N. Billeh
Shiella Caldejon
Peter Groblewski
Timothy M. Henley
India Kato
Eric Lee
Jennifer Luviano
Kyla Mace
Chelsea Nayan
Thuyanh V. Nguyen
Kat North
Jed Perkins
Sam Seid
Matthew T. Valley
Ali Williford
Timothy P. Lillicrap
The study of plasticity has always been about gradients
Konrad Paul Kording
Catalyzing next-generation Artificial Intelligence through NeuroAI
Anthony Zador
Sean Escola
Bence Ölveczky
Kwabena Boahen
Matthew Botvinick
Dmitri Chklovskii
Anne Churchland
Claudia Clopath
James DiCarlo
Surya
Surya Ganguli
Jeff Hawkins
Konrad Paul Kording
Alexei Koulakov
Timothy P. Lillicrap
Adam
Adam Marblestone … (see 9 more)
Bruno Olshausen
Alexandre Pouget
Cristina Savin
Terrence Sejnowski
Eero Simoncelli
Sara Solla
David Sussillo
Andreas S. Tolias
Doris Tsao
Transfer Entropy Bottleneck: Learning Sequence to Sequence Information Transfer
When presented with a data stream of two statistically dependent variables, predicting the future of one of the variables (the target stream… (see more)) can benefit from information about both its history and the history of the other variable (the source stream). For example, fluctuations in temperature at a weather station can be predicted using both temperatures and barometric readings. However, a challenge when modelling such data is that it is easy for a neural network to rely on the greatest joint correlations within the target stream, which may ignore a crucial but small information transfer from the source to the target stream. As well, there are often situations where the target stream may have previously been modelled independently and it would be useful to use that model to inform a new joint model. Here, we develop an information bottleneck approach for conditional learning on two dependent streams of data. Our method, which we call Transfer Entropy Bottleneck (TEB), allows one to learn a model that bottlenecks the directed information transferred from the source variable to the target variable, while quantifying this information transfer within the model. As such, TEB provides a useful new information bottleneck approach for modelling two statistically dependent streams of data in order to make predictions about one of them.
How gradient estimator variance and bias impact learning in neural networks
Yuhan Helena Liu
Konrad Paul Kording
There is growing interest in understanding how real brains may approximate gradients and how gradients can be used to train neuromorphic chi… (see more)ps. However, neither real brains nor neuromorphic chips can perfectly follow the loss gradient, so parameter updates would necessarily use gradient estimators that have some variance and/or bias. Therefore, there is a need to understand better how variance and bias in gradient estimators impact learning dependent on network and task properties. Here, we show that variance and bias can impair learning on the training data, but some degree of variance and bias in a gradient estimator can be beneficial for generalization. We find that the ideal amount of variance and bias in a gradient estimator are dependent on several properties of the network and task: the size and activity sparsity of the network, the norm of the gradient, and the curvature of the loss landscape. As such, whether considering biologically-plausible learning algorithms or algorithms for training neuromorphic chips, researchers can analyze these properties to determine whether their approximation to gradient descent will be effective for learning given their network and task properties.