Portrait of Sonia Joseph

Sonia Joseph

PhD - McGill University
Supervisor
Research Topics
Deep Learning
Machine Learning Theory
Multimodal Learning

Publications

Steering CLIP's vision transformer with sparse autoencoders
Ethan Goldfarb
Lorenz Hufe
Yossi Gandelsman
Robert Graham
Wojciech Samek
While vision models are highly capable, their internal mechanisms remain poorly understood-- a challenge which sparse autoencoders (SAEs) ha… (see more)ve helped address in language, but which remains underexplored in vision. We address this gap by training SAEs on CLIP's vision transformer and uncover key differences between vision and language processing, including distinct sparsity patterns for SAEs trained across layers and token types. We then provide the first systematic analysis of the steerability of CLIP's vision transformer by introducing metrics to quantify how precisely SAE features can be steered to affect the model's output. We find that 10-15% of neurons and features are steerable, with SAEs providing thousands more steerable features than the base model. Through targeted suppression of SAE features, we then demonstrate improved performance on three vision disentanglement tasks (CelebA, Waterbirds, and typographic attacks), finding optimal disentanglement in middle model layers, and achieving state-of-the-art performance on defense against typographic attacks. We release our CLIP SAE models and code to support future research in vision transformer interpretability.
Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent
Karolis Jucys
Stephanie Milani
Mohammad Reza Samsami
Özgür Şimşek
Understanding the mechanisms behind decisions taken by large foundation models in sequential tasks is critical to ensuring that such systems… (see more) operate transparently and safely. However, interpretability methods have not yet been applied extensively to large-scale agents based on reinforcement learning. In this work, we perform exploratory analysis on the Video PreTraining (VPT) Minecraft playing agent, one of the largest open-source vision-based agents. We try to illuminate its reasoning mechanisms by applying various interpretability techniques. First, we analyze the attention mechanism while the agent solves its training task --- crafting a diamond pickaxe. The agent seems to pay attention to the 4 last frames and several key-frames further back. This provides clues as to how it maintains coherence in the task that takes 3-10 minutes, despite the agent's short memory span of only six seconds. Second, we perform various interventions, which help us uncover a worrying case of goal misgeneralization: VPT mistakenly identifies a villager wearing brown clothes as a tree trunk and punches it to death, when positioned stationary under green tree leaves. We demonstrate similar misbehavior in a related agent (STEVE-1), which motivates the use of VPT as a model organism for large-scale vision-based agent interpretability.
On the Information Geometry of Vision Transformers
Kumar Krishna Agrawal