Portrait of Mehrab Hamidi is unavailable

Mehrab Hamidi

Lab Representative
PhD
Research Topics
Deep Learning
Machine Learning Theory

Publications

T-GRAB: A Synthetic Diagnostic Benchmark for Learning on Temporal Graphs
Dynamic graph learning methods have recently emerged as powerful tools for modelling relational data evolving through time. However, despite… (see more) extensive benchmarking efforts, it remains unclear whether current Temporal Graph Neural Networks (TGNNs) effectively capture core temporal patterns such as periodicity, cause-and-effect, and long-range dependencies. In this work, we introduce the Temporal Graph Reasoning Benchmark (T-GRAB), a comprehensive set of synthetic tasks designed to systematically probe the capabilities of TGNNs to reason across time. T-GRAB provides controlled, interpretable tasks that isolate key temporal skills: counting/memorizing periodic repetitions, inferring delayed causal effects, and capturing long-range dependencies over both spatial and temporal dimensions. We evaluate 11 temporal graph learning methods on these tasks, revealing fundamental shortcomings in their ability to generalize temporal patterns. Our findings offer actionable insights into the limitations of current models, highlight challenges hidden by traditional real-world benchmarks, and motivate the development of architectures with stronger temporal reasoning abilities. The code for T-GRAB can be found at: https://github.com/alirezadizaji/T-GRAB.
Interpretability in Action: Exploratory Analysis of VPT, a Minecraft Agent
Karolis Jucys
Stephanie Milani
Mohammad Reza Samsami
Özgür Şimşek
Understanding the mechanisms behind decisions taken by large foundation models in sequential tasks is critical to ensuring that such systems… (see more) operate transparently and safely. However, interpretability methods have not yet been applied extensively to large-scale agents based on reinforcement learning. In this work, we perform exploratory analysis on the Video PreTraining (VPT) Minecraft playing agent, one of the largest open-source vision-based agents. We try to illuminate its reasoning mechanisms by applying various interpretability techniques. First, we analyze the attention mechanism while the agent solves its training task --- crafting a diamond pickaxe. The agent seems to pay attention to the 4 last frames and several key-frames further back. This provides clues as to how it maintains coherence in the task that takes 3-10 minutes, despite the agent's short memory span of only six seconds. Second, we perform various interventions, which help us uncover a worrying case of goal misgeneralization: VPT mistakenly identifies a villager wearing brown clothes as a tree trunk and punches it to death, when positioned stationary under green tree leaves. We demonstrate similar misbehavior in a related agent (STEVE-1), which motivates the use of VPT as a model organism for large-scale vision-based agent interpretability.