Portrait de Pablo Piantanida

Pablo Piantanida

Membre académique associé
Professeur titulaire, Université Paris-Saclay
Directeur, Laboratoire international sur les systèmes d'apprentissage (ILLS), McGill University
Professeur associé, École de technologie supérieure (ETS), Département de génie des systèmes

Biographie

Je suis professeur au CentraleSupélec de l'Université Paris-Saclay avec le Centre national français de la recherche scientifique (CNRS), et directeur du Laboratoire international sur les systèmes d'apprentissage (ILLS) qui regroupe l'Université McGill, l'École de technologie supérieure (ÉTS), Mila - Institut québécois d'intelligence artificielle, le Centre national français de la recherche scientifique (CNRS), l'Université Paris-Saclay et l'École CentraleSupélec.

Mes recherches portent sur l'application de techniques statistiques et de théorie de l'information avancées au domaine de l'apprentissage automatique. Je m'intéresse au développement de techniques rigoureuses basées sur des mesures et des concepts d'information pour construire des systèmes d'IA sûrs et fiables et établir la confiance dans leur comportement et leur robustesse, sécurisant ainsi leur utilisation dans la société. Mes principaux domaines d'expertise sont la théorie de l'information, la géométrie de l'information, la théorie de l'apprentissage, la protection de la vie privée, l'équité, avec des applications à la vision par ordinateur et au traitement du langage naturel.

J'ai fait mes études de premier cycle à l'université de Buenos Aires et j'ai poursuivi des études supérieures en mathématiques appliquées à l'université Paris-Saclay en France. Tout au long de ma carrière, j'ai également occupé des postes d'invité à l'INRIA, à l'Université de Montréal et à l'École de technologie supérieure (ÉTS), entre autres.

Mes recherches antérieures ont porté sur les domaines de la théorie de l'information au-delà de la compression distribuée, de la décision statistique, du codage universel des sources, de la coopération, de la rétroaction, du codage d'index, de la génération de clés, de la sécurité et de la protection des données.

Je donne des cours sur l'apprentissage automatique, la théorie de l'information et l'apprentissage profond, couvrant des sujets tels que la théorie de l'apprentissage statistique, les mesures de l'information, les principes statistiques des réseaux neuronaux.

Étudiants actuels

Publications

Is Meta-training Really Necessary for Molecular Few-Shot Learning ?
Philippe Formont
Hugo Jeannin
Ismail Ben Ayed
Few-shot learning has recently attracted significant interest in drug discovery, with a recent, fast-growing literature mostly involving con… (voir plus)voluted meta-learning strategies. We revisit the more straightforward fine-tuning approach for molecular data, and propose a regularized quadratic-probe loss based on the the Mahalanobis distance. We design a dedicated block-coordinate descent optimizer, which avoid the degenerate solutions of our loss. Interestingly, our simple fine-tuning approach achieves highly competitive performances in comparison to state-of-the-art methods, while being applicable to black-box settings and removing the need for specific episodic pre-training strategies. Furthermore, we introduce a new benchmark to assess the robustness of the competing methods to domain shifts. In this setting, our fine-tuning baseline obtains consistently better results than meta-learning methods.
COSMIC: Mutual Information for Task-Agnostic Summarization Evaluation
Maxime Darrin
Philippe Formont
Jackie Chi Kit Cheung
Assessing the quality of summarizers poses significant challenges. In response, we propose a novel task-oriented evaluation approach that as… (voir plus)sesses summarizers based on their capacity to produce summaries that are useful for downstream tasks, while preserving task outcomes. We theoretically establish a direct relationship between the resulting error probability of these tasks and the mutual information between source texts and generated summaries. We introduce
A Data-Driven Measure of Relative Uncertainty for Misclassification Detection
Eduardo Dadalto Câmara Gomes
Marco Romanelli
Georg Pichler
On the Stability of a non-hyperbolic nonlinear map with non-bounded set of non-isolated fixed points with applications to Machine Learning
Roberta Hansen
Matias Vera
Lautaro Estienne
Luciana Ferrer
Optimal Zero-Shot Detector for Multi-Armed Attacks
Federica Granese
Marco Romanelli
This paper explores a scenario in which a malicious actor employs a multi-armed attack strategy to manipulate data samples, offering them va… (voir plus)rious avenues to introduce noise into the dataset. Our central objective is to protect the data by detecting any alterations to the input. We approach this defensive strategy with utmost caution, operating in an environment where the defender possesses significantly less information compared to the attacker. Specifically, the defender is unable to utilize any data samples for training a defense model or verifying the integrity of the channel. Instead, the defender relies exclusively on a set of pre-existing detectors readily available"off the shelf". To tackle this challenge, we derive an innovative information-theoretic defense approach that optimally aggregates the decisions made by these detectors, eliminating the need for any training data. We further explore a practical use-case scenario for empirical evaluation, where the attacker possesses a pre-trained classifier and launches well-known adversarial attacks against it. Our experiments highlight the effectiveness of our proposed solution, even in scenarios that deviate from the optimal setup.
Preserving Privacy in GANs Against Membership Inference Attack
Mohammadhadi Shateri
Francisco Messina
Fabrice Labeau
Generative Adversarial Networks (GANs) have been widely used for generating synthetic data for cases where there is a limited size real-worl… (voir plus)d data set or when data holders are unwilling to share their data samples. Recent works showed that GANs, due to overfitting and memorization, might leak information regarding their training data samples. This makes GANs vulnerable to Membership Inference Attacks (MIAs). Several defense strategies have been proposed in the literature to mitigate this privacy issue. Unfortunately, defense strategies based on differential privacy are proven to reduce extensively the quality of the synthetic data points. On the other hand, more recent frameworks such as PrivGAN and PAR-GAN are not suitable for small-size training data sets. In the present work, the overfitting in GANs is studied in terms of the discriminator, and a more general measure of overfitting based on the Bhattacharyya coefficient is defined. Then, inspired by Fano’s inequality, our first defense mechanism against MIAs is proposed. This framework, which requires only a simple modification in the loss function of GANs, is referred to as the maximum entropy GAN or MEGAN and significantly improves the robustness of GANs to MIAs. As a second defense strategy, a more heuristic model based on minimizing the information leaked from the generated samples about the training data points is presented. This approach is referred to as mutual information minimization GAN (MIMGAN) and uses a variational representation of the mutual information to minimize the information that a synthetic sample might leak about the whole training data set. Applying the proposed frameworks to some commonly used data sets against state-of-the-art MIAs reveals that the proposed methods can reduce the accuracy of the adversaries to the level of random guessing accuracy with a small reduction in the quality of the synthetic data samples.
Rainproof: An Umbrella To Shield Text Generators From Out-Of-Distribution Data
Maxime Darrin
Pierre Colombo
Implementing effective control mechanisms to ensure the proper functioning and security of deployed NLP models, from translation to chatbots… (voir plus), is essential. A key ingredient to ensure safe system behaviour is Out-Of-Distribution (OOD) detection, which aims to detect whether an input sample is statistically far from the training distribution. Although OOD detection is a widely covered topic in classification tasks, most methods rely on hidden features output by the encoder. In this work, we focus on leveraging soft-probabilities in a black-box framework, i.e. we can access the soft-predictions but not the internal states of the model. Our contributions include: (i) RAINPROOF a Relative informAItioN Projection OOD detection framework; and (ii) a more operational evaluation setting for OOD detection. Surprisingly, we find that OOD detection is not necessarily aligned with task-specific measures. The OOD detector may filter out samples well processed by the model and keep samples that are not, leading to weaker performance. Our results show that RAINPROOF provides OOD detection methods more aligned with task-specific performance metrics than traditional OOD detectors.
Toward Stronger Textual Attack Detectors
Pierre Colombo
Marine Picot
Nathan Noiry
Guillaume Staerman
The landscape of available textual adversarial attacks keeps growing, posing severe threats and raising concerns regarding the deep NLP syst… (voir plus)em's integrity. However, the crucial problem of defending against malicious attacks has only drawn the attention of the NLP community. The latter is nonetheless instrumental in developing robust and trustworthy systems. This paper makes two important contributions in this line of search: (i) we introduce LAROUSSE, a new framework to detect textual adversarial attacks and (ii) we introduce STAKEOUT, a new benchmark composed of nine popular attack methods, three datasets, and two pre-trained models. LAROUSSE is ready-to-use in production as it is unsupervised, hyperparameter-free, and non-differentiable, protecting it against gradient-based methods. Our new benchmark STAKEOUT allows for a robust evaluation framework: we conduct extensive numerical experiments which demonstrate that LAROUSSE outperforms previous methods, and which allows to identify interesting factors of detection rate variations.
A Novel Information-Theoretic Objective to Disentangle Representations for Fair Classification
Pierre Colombo
Nathan Noiry
Guillaume Staerman
Fundamental Limits of Membership Inference Attacks on Machine Learning Models
Eric Aubinais
Elisabeth Gassiat
Membership inference attacks (MIA) can reveal whether a particular data point was part of the training dataset, potentially exposing sensiti… (voir plus)ve information about individuals. This article provides theoretical guarantees by exploring the fundamental statistical limitations associated with MIAs on machine learning models. More precisely, we first derive the statistical quantity that governs the effectiveness and success of such attacks. We then deduce that in a very general regression setting with overfitting algorithms, attacks may have a high probability of success. Finally, we investigate several situations for which we provide bounds on this quantity of interest. Our results enable us to deduce the accuracy of potential attacks based on the number of samples and other structural parameters of learning models. In certain instances, these parameters can be directly estimated from the dataset.
RainProof: An Umbrella to Shield Text Generator from Out-Of-Distribution Data
Maxime Darrin
Pierre Colombo
Implementing effective control mechanisms to ensure the proper functioning and security of deployed NLP models, from translation to chatbots… (voir plus), is essential. A key ingredient to ensure safe system behaviour is Out-Of-Distribution (OOD) detection, which aims to detect whether an input sample is statistically far from the training distribution. Although OOD detection is a widely covered topic in classification tasks, most methods rely on hidden features output by the encoder. In this work, we focus on leveraging soft-probabilities in a black-box framework, i.e. we can access the soft-predictions but not the internal states of the model. Our contributions include: (i) RAINPROOF a Relative informAItioN Projection OOD detection framework; and (ii) a more operational evaluation setting for OOD detection. Surprisingly, we find that OOD detection is not necessarily aligned with task-specific measures. The OOD detector may filter out samples well processed by the model and keep samples that are not, leading to weaker performance. Our results show that RAINPROOF provides OOD detection methods more aligned with task-specific performance metrics than traditional OOD detectors.
Transductive Learning for Textual Few-Shot Classification in API-based Embedding Models
Pierre Colombo
Victor Pellegrain
Malik Boudiaf
Myriam Tami
Victor Storchan
Ismail Ben Ayed
C'eline Hudelot
Proprietary and closed APIs are becoming increasingly common to process natural language, and are impacting the practical applications of na… (voir plus)tural language processing, including few-shot classification. Few-shot classification involves training a model to perform a new classification task with a handful of labeled data. This paper presents three contributions. First, we introduce a scenario where the embedding of a pre-trained model is served through a gated API with compute-cost and data-privacy constraints. Second, we propose a transductive inference, a learning paradigm that has been overlooked by the NLP community. Transductive inference, unlike traditional inductive learning, leverages the statistics of unlabeled data. We also introduce a new parameter-free transductive regularizer based on the Fisher-Rao loss, which can be used on top of the gated API embeddings. This method fully utilizes unlabeled data, does not share any label with the third-party API provider and could serve as a baseline for future research. Third, we propose an improved experimental setting and compile a benchmark of eight datasets involving multiclass classification in four different languages, with up to 151 classes. We evaluate our methods using eight backbone models, along with an episodic evaluation over 1,000 episodes, which demonstrate the superiority of transductive inference over the standard inductive setting.