Publications

Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Audio description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their pee… (see more)rs. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. We introduce the Large Scale Movie Description Challenge (LSMDC) which contains a parallel corpus of 128,118 sentences aligned to video clips from 200 movies (around 150 h of video in total). The goal of the challenge is to automatically generate descriptions for the movie clips. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in the challenges organized in the context of two workshops at ICCV 2015 and ECCV 2016.
Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Audio description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their pee… (see more)rs. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. We introduce the Large Scale Movie Description Challenge (LSMDC) which contains a parallel corpus of 128,118 sentences aligned to video clips from 200 movies (around 150 h of video in total). The goal of the challenge is to automatically generate descriptions for the movie clips. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in the challenges organized in the context of two workshops at ICCV 2015 and ECCV 2016.
Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Audio description (AD) provides linguistic descriptions of movies and allows visually impaired people to follow a movie along with their pee… (see more)rs. Such descriptions are by design mainly visual and thus naturally form an interesting data source for computer vision and computational linguistics. In this work we propose a novel dataset which contains transcribed ADs, which are temporally aligned to full length movies. In addition we also collected and aligned movie scripts used in prior work and compare the two sources of descriptions. We introduce the Large Scale Movie Description Challenge (LSMDC) which contains a parallel corpus of 128,118 sentences aligned to video clips from 200 movies (around 150 h of video in total). The goal of the challenge is to automatically generate descriptions for the movie clips. First we characterize the dataset by benchmarking different approaches for generating video descriptions. Comparing ADs to scripts, we find that ADs are more visual and describe precisely what is shown rather than what should happen according to the scripts created prior to movie production. Furthermore, we present and compare the results of several teams who participated in the challenges organized in the context of two workshops at ICCV 2015 and ECCV 2016.
Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Movie Description
Anna Rohrbach
Marcus Rohrbach
Niket Tandon
Bernt Schiele
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian G Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (see more)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
Theano: A Python framework for fast computation of mathematical expressions
Rami Al-rfou'
Amjad Almahairi
Christof Angermüller
Frédéric Bastien
Justin S. Bayer
A. Belikov
A. Belopolsky
J. Bergstra
Josh Bleecher Snyder
Paul F. Christiano
Marc-Alexandre Côté
Myriam Côté
Julien Demouth
Sander Dieleman
M'elanie Ducoffe
Ziye Fan
Mathieu Germain
Ian J. Goodfellow
Matthew Graham
Balázs Hidasi
Arjun Jain
S'ebastien Jean
Kai Jia
Mikhail V. Korobov
Vivek Kulkarni
Pascal Lamblin
Eric P. Larsen
S. Lee
Simon-mark Lefrancois
J. Livezey
Cory R. Lorenz
Jeremiah L. Lowin
Qianli M. Ma
R. McGibbon
Mehdi Mirza
Alberto Orlandi
Colin Raffel
Daniel Renshaw
Matthew David Rocklin
Markus Dr. Roth
Peter Sadowski
John Salvatier
Jan Schlüter
John D. Schulman
Gabriel Schwartz
Iulian V. Serban
Samira Shabanian
Sigurd Spieckermann
S. Subramanyam
Gijs van Tulder
Joseph P. Turian
Sebastian Urban
Dustin J. Webb
M. Willson
Lijun Xue
Theano is a Python library that allows to define, optimize, and evaluate mathematical expressions involving multi-dimensional arrays efficie… (see more)ntly. Since its introduction, it has been one of the most used CPU and GPU mathematical compilers - especially in the machine learning community - and has shown steady performance improvements. Theano is being actively and continuously developed since 2008, multiple frameworks have been built on top of it and it has been used to produce many state-of-the-art machine learning models. The present article is structured as follows. Section I provides an overview of the Theano software and its community. Section II presents the principal features of Theano and how to use them, and compares them with other similar projects. Section III focuses on recently-introduced functionalities and improvements. Section IV compares the performance of Theano against Torch7 and TensorFlow on several machine learning models. Section V discusses current limitations of Theano and potential ways of improving it.
A Hierarchical Latent Variable Encoder-Decoder Model for Generating Dialogues
Sequential data often possesses hierarchical structures with complex dependencies between sub-sequences, such as found between the utterance… (see more)s in a dialogue. To model these dependencies in a generative framework, we propose a neural network-based generative architecture, with stochastic latent variables that span a variable number of time steps. We apply the proposed model to the task of dialogue response generation and compare it with other recent neural-network architectures. We evaluate the model performance through a human evaluation study. The experiments demonstrate that our model improves upon recently proposed models and that the latent variables facilitate both the generation of meaningful, long and diverse responses and maintaining dialogue state.