A joint initiative of CIFAR and Mila, the AI Insights for Policymakers Program connects decision-makers with leading AI researchers through office hours and policy feasibility testing. The next session will be held on October 9 and 10.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila is hosting its first quantum computing hackathon on November 21, a unique day to explore quantum and AI prototyping, collaborate on Quandela and IBM platforms, and learn, share, and network in a stimulating environment at the heart of Quebec’s AI and quantum ecosystem.
This new initiative aims to strengthen connections between Mila’s research community, its partners, and AI experts across Quebec and Canada through in-person meetings and events focused on AI adoption in industry.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
LLMs for Experiment Design in Scientific Domains: Are We There Yet?
Scaling language models unlocks impressive capabilities, but the accompanying computational and memory demands make both training and deploy… (see more)ment expensive. Existing efficiency efforts typically target either parameter sharing or adaptive computation, leaving open the question of how to attain both simultaneously. We introduce Mixture-of-Recursions (MoR), a unified framework that combines the two axes of efficiency inside a single Recursive Transformer. MoR reuses a shared stack of layers across recursion steps to achieve parameter efficiency, while lightweight routers enable adaptive token-level thinking by dynamically assign recursion depth to tokens, thereby focusing quadratic attention computation only where it is most useful. Further enhancing its efficiency, MoR incorporates a recursion-wise key-value caching mechanism that eliminates redundant memory access across recursion steps by selectively storing only the key-value caches for designated tokens. Across pretraining runs at model scales ranging from 135M to 1.7B parameters, MoR forms a new Pareto frontier: at equal training FLOPs and smaller model sizes, it significantly lowers validation perplexity and improves few-shot accuracy, while delivering higher throughput compared with vanilla and existing recursive baselines. These gains demonstrate that MoR is an effective path towards large-model quality without incurring large-model cost.
Distributed pre-training of large models at scale often imposes heavy memory demands on individual nodes and incurs significant intra-node c… (see more)ommunication costs. We propose a novel alternative approach that reduces the memory requirements by training small, structured subnetworks of the model on separate workers. Unlike pipelining, our method avoids inter-node activation communication and maintains bandwidth requirements that are comparable to or lower than standard data parallel communication schemes based on all-reduce. We evaluate two subnetwork construction strategies guided by the principle of ensuring uniform representation of each parameter across the distributed training setup. Our results show that the stochastic block dropping technique consistently outperforms the width-wise subnetwork construction previously explored in federated learning. We empirically attribute this superior performance to stronger gradient alignment in subnetworks that retain blocks having skip connections. Preliminary experiments highlight the promise of our approach, achieving a
Efficient long-context modeling remains a critical challenge for natural language processing (NLP), as the time complexity of the predominan… (see more)t Transformer architecture scales quadratically with the sequence length. While state-space models (SSMs) offer alternative sub-quadratic solutions, they struggle to capture long-range dependencies effectively. In this work, we focus on analyzing and improving the long-context modeling capabilities of SSMs. We show that the widely used synthetic task, associative recall, which requires a model to recall a value associated with a single key without context, insufficiently represents the complexities of real-world long-context modeling. To address this limitation, we extend the associative recall to a novel synthetic task, \emph{joint recall}, which requires a model to recall the value associated with a key given in a specified context. Theoretically, we prove that SSMs do not have the expressiveness to solve multi-query joint recall in sub-quadratic time complexity. To resolve this issue, we propose a solution based on integrating SSMs with Context-Dependent Sparse Attention (CDSA), which has the expressiveness to solve multi-query joint recall with sub-quadratic computation. To bridge the gap between theoretical analysis and real-world applications, we propose locality-sensitive Hashing Attention with sparse Key Selection (HAX), which instantiates the theoretical solution and is further tailored to natural language domains. Extensive experiments on both synthetic and real-world long-context benchmarks show that HAX consistently outperforms SSM baselines and SSMs integrated with context-independent sparse attention (CISA).
Sampling efficiently from a target unnormalized probability density remains a core challenge, with relevance across countless high-impact sc… (see more)ientific applications. A promising approach towards this challenge is the design of amortized samplers that borrow key ideas, such as probability path design, from state-of-the-art generative diffusion models. However, all existing diffusion-based samplers remain unable to draw samples from distributions at the scale of even simple molecular systems. In this paper, we propose Progressive Inference-Time Annealing (PITA), a novel framework to learn diffusion-based samplers that combines two complementary interpolation techniques: I.) Annealing of the Boltzmann distribution and II.) Diffusion smoothing. PITA trains a sequence of diffusion models from high to low temperatures by sequentially training each model at progressively higher temperatures, leveraging engineered easy access to samples of the temperature-annealed target density. In the subsequent step, PITA enables simulating the trained diffusion model to procure training samples at a lower temperature for the next diffusion model through inference-time annealing using a novel Feynman-Kac PDE combined with Sequential Monte Carlo. Empirically, PITA enables, for the first time, equilibrium sampling of N-body particle systems, Alanine Dipeptide, and tripeptides in Cartesian coordinates with dramatically lower energy function evaluations. Code available at: https://github.com/taraak/pita
Behavioral cloning (BC) methods trained with supervised learning (SL) are an effective way to learn policies from human demonstrations in do… (see more)mains like robotics. Goal-conditioning these policies enables a single generalist policy to capture diverse behaviors contained within an offline dataset. While goal-conditioned behavior cloning (GCBC) methods can perform well on in-distribution training tasks, they do not necessarily generalize zero-shot to tasks that require conditioning on novel state-goal pairs, i.e. combinatorial generalization. In part, this limitation can be attributed to a lack of temporal consistency in the state representation learned by BC; if temporally related states are encoded to similar latent representations, then the out-of-distribution gap for novel state-goal pairs would be reduced. Hence, encouraging this temporal consistency in the representation space should facilitate combinatorial generalization. Successor representations, which encode the distribution of future states visited from the current state, nicely encapsulate this property. However, previous methods for learning successor representations have relied on contrastive samples, temporal-difference (TD) learning, or both. In this work, we propose a simple yet effective representation learning objective,
The advance of speech decoding from non-invasive brain data holds the potential for profound societal impact. Among its most promising appli… (see more)cations is the restoration of communication to paralysed individuals affected by speech deficits such as dysarthria, without the need for high-risk surgical interventions. The ultimate aim of the 2025 PNPL competition is to produce the conditions for an"ImageNet moment"or breakthrough in non-invasive neural decoding, by harnessing the collective power of the machine learning community. To facilitate this vision we present the largest within-subject MEG dataset recorded to date (LibriBrain) together with a user-friendly Python library (pnpl) for easy data access and integration with deep learning frameworks. For the competition we define two foundational tasks (i.e. Speech Detection and Phoneme Classification from brain data), complete with standardised data splits and evaluation metrics, illustrative benchmark models, online tutorial code, a community discussion board, and public leaderboard for submissions. To promote accessibility and participation the competition features a Standard track that emphasises algorithmic innovation, as well as an Extended track that is expected to reward larger-scale computing, accelerating progress toward a non-invasive brain-computer interface for speech.