A Layer Selection Approach to Test Time Adaptation
Sabyasachi Sahoo
Mostafa ElAraby
Jonas Ngnawe
Yann Batiste Pequignot
Frederic Precioso
Test Time Adaptation (TTA) addresses the problem of distribution shift by adapting a pretrained model to a new domain during inference. When… (see more) faced with challenging shifts, most methods collapse and perform worse than the original pretrained model. In this paper, we find that not all layers are equally receptive to the adaptation, and the layers with the most misaligned gradients often cause performance degradation. To address this, we propose GALA, a novel layer selection criterion to identify the most beneficial updates to perform during test time adaptation. This criterion can also filter out unreliable samples with noisy gradients. Its simplicity allows seamless integration with existing TTA loss functions, thereby preventing degradation and focusing adaptation on the most trainable layers. This approach also helps to regularize adaptation to preserve the pretrained features, which are crucial for handling unseen domains. Through extensive experiments, we demonstrate that the proposed layer selection framework improves the performance of existing TTA approaches across multiple datasets, domain shifts, model architectures, and TTA losses.
StarVector: Generating Scalable Vector Graphics Code from Images and Text
Juan A. Rodriguez
Abhay Puri
Shubham Agarwal
Issam Hadj Laradji
Pau Rodriguez
Sai Rajeswar
David Vazquez
AgentAda: Skill-Adaptive Data Analytics for Tailored Insight Discovery
Amirhossein Abaskohi
Amrutha Varshini Ramesh
Shailesh Nanisetty
Chirag Goel
David Vazquez
Spandana Gella
Giuseppe Carenini
Issam Hadj Laradji
Min-Max Optimisation for Nonconvex-Nonconcave Functions Using a Random Zeroth-Order Extragradient Algorithm
Amir Ali Farzin
Yuen-Man Pun
Philipp Braun
Youssef Diouane
Iman Shames
Leveraging Machine Learning Techniques in Intrusion Detection Systems for Internet of Things
Saeid Jamshidi
Amin Nikanjam
Nafi Kawser Wazed
Lugha-Llama: Adapting Large Language Models for African Languages
Happy Buzaaba
Alexander Wettig
Christiane Fellbaum
Echoes in the Noise: Posterior Samples of Faint Galaxy Surface Brightness Profiles with Score-Based Likelihoods and Priors
Alexandre Adam
Connor Stone
Connor Bottrell
Ronan Legin
Examining the detailed structure of galaxy populations provides valuable insights into their formation and evolution mechanisms. Significant… (see more) barriers to such analysis are the non-trivial noise properties of real astronomical images and the point spread function (PSF) which blurs structure. Here we present a framework which combines recent advances in score-based likelihood characterization and diffusion model priors to perform a Bayesian analysis of image deconvolution. The method, when applied to minimally processed \emph{Hubble Space Telescope} (\emph{HST}) data, recovers structures which have otherwise only become visible in next-generation \emph{James Webb Space Telescope} (\emph{JWST}) imaging.
InfoGain Wavelets: Furthering the Design of Diffusion Wavelets for Graph-Structured Data
David R. Johnson
Michael Perlmutter
TAPNext: Tracking Any Point (TAP) as Next Token Prediction
Artem Zholus
Carl Doersch
Yi Yang
Skanda Koppula
Viorica Patraucean
Xu Owen He
Ignacio Rocco
Mehdi S. M. Sajjadi
Prism: Dynamic and Flexible Benchmarking of LLMs Code Generation with Monte Carlo Tree Search
Vahid Majdinasab
Amin Nikanjam
View-Dependent Deformation Fields for 2D Editing of 3D Models
Martin El Mqirmi
Graph Neural Networks Meet Probabilistic Graphical Models: A Survey
Chenqing Hua
Sitao Luan
Qian Zhang
Jie Fu