We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Pushing the frontiers in climate modelling and analysis with machine learning
Submitted genomic data for respiratory viruses reflect the emergence and spread of new variants. Although delays in submission limit the uti… (see more)lity of these data for prospective surveillance, they may be useful for evaluating other surveillance sources. However, few studies have investigated the use of these data for evaluating aberration detection in surveillance systems. Our study used a Bayesian online change point detection algorithm (BOCP) to detect increases in the number of submitted genome samples as a means of establishing 'gold standard' dates of outbreak onset in multiple countries. We compared models using different data transformations and parameter values. BOCP detected change points that were not sensitive to different parameter settings. We also found data transformations were essential prior to change point detection. Our study presents a framework for using global genomic submission data to develop 'gold standard' dates about the onset of outbreaks due to new viral variants.
An overwhelming majority of protein-protein interaction (PPI) studies are conducted in a select few model organisms largely due to constrain… (see more)ts in time and cost of the associated “wet lab” experiments. In silico PPI inference methods are ideal tools to overcome these limitations, but often struggle with cross-species predictions. We present INTREPPPID, a method which incorporates orthology data using a new “quintuplet” neural network, which is constructed with five parallel encoders with shared parameters. INTREPPPID incorporates both a PPI classification task and an orthologous locality task. The latter learns embeddings of orthologues that have small Euclidean distances between them and large distances between embeddings of all other proteins. INTREPPPID outperforms all other leading PPI inference methods tested on both the intra-species and cross-species tasks using strict evaluation datasets. We show that INTREPPPID’s orthologous locality loss increases performance because of the biological relevance of the orthologue data, and not due to some other specious aspect of the architecture. Finally, we introduce PPI.bio and PPI Origami, a web server interface for INTREPPPID and a software tool for creating strict evaluation datasets, respectively. Together, these two initiatives aim to make both the use and development of PPI inference tools more accessible to the community. GRAPHICAL ABSTRACT
The goal of object-centric representation learning is to decompose visual scenes into a structured representation that isolates the entities… (see more). Recent successes have shown that object-centric representation learning can be scaled to real-world scenes by utilizing pre-trained self-supervised features. However, so far, object-centric methods have mostly been applied in-distribution, with models trained and evaluated on the same dataset. This is in contrast to the wider trend in machine learning towards general-purpose models directly applicable to unseen data and tasks. Thus, in this work, we study current object-centric methods through the lens of zero-shot generalization by introducing a benchmark comprising eight different synthetic and real-world datasets. We analyze the factors influencing zero-shot performance and find that training on diverse real-world images improves transferability to unseen scenarios. Furthermore, inspired by the success of task-specific fine-tuning in foundation models, we introduce a novel fine-tuning strategy to adapt pre-trained vision encoders for the task of object discovery. We find that the proposed approach results in state-of-the-art performance for unsupervised object discovery, exhibiting strong zero-shot transfer to unseen datasets.
Deep generative models learn continuous representations of complex data manifolds using a finite number of samples during training. For a pr… (see more)e-trained generative model, the common way to evaluate the quality of the manifold representation learned, is by computing global metrics like Fr\'echet Inception Distance using a large number of generated and real samples. However, generative model performance is not uniform across the learned manifold, e.g., for \textit{foundation models} like Stable Diffusion generation performance can vary significantly based on the conditioning or initial noise vector being denoised. In this paper we study the relationship between the \textit{local geometry of the learned manifold} and downstream generation. Based on the theory of continuous piecewise-linear (CPWL) generators, we use three geometric descriptors - scaling (
The availability of performant pre-trained models has led to a proliferation of fine-tuned expert models that are specialized to a particula… (see more)r domain or task. Model MoErging methods aim to recycle expert models to create an aggregate system with improved performance or generalization. A key component of MoErging methods is the creation of a router that decides which expert model(s) to use for a particular input or application. The promise, effectiveness, and large design space of MoErging has spurred the development of many new methods over the past few years. This rapid pace of development has made it challenging to compare different MoErging methods, which are rarely compared to one another and are often validated in different experimental setups. To remedy such gaps, we present a comprehensive survey of MoErging methods that includes a novel taxonomy for cataloging key design choices and clarifying suitable applications for each method. Apart from surveying MoErging research, we inventory software tools and applications that make use of MoErging. We additionally discuss related fields of study such as model merging, multitask learning, and mixture-of-experts models. Taken as a whole, our survey provides a unified overview of existing MoErging methods and creates a solid foundation for future work in this burgeoning field.
Deep learning for time-series anomaly detection (TSAD) has gained significant attention over the past decade. Despite the reported improveme… (see more)nts in several papers, the practical application of these models remains limited. Recent studies have cast doubt on these models, attributing their results to flawed evaluation techniques. However, the impact of initialization has largely been overlooked. This paper provides a critical analysis of the initialization effects on TSAD model performance. Our extensive experiments reveal that TSAD models are highly sensitive to hyperparameters such as window size, seed number, and normalization. This sensitivity often leads to significant variability in performance, which can be exploited to artificially inflate the reported efficacy of these models. We demonstrate that even minor changes in initialization parameters can result in performance variations that overshadow the claimed improvements from novel model architectures. Our findings highlight the need for rigorous evaluation protocols and transparent reporting of preprocessing steps to ensure the reliability and fairness of anomaly detection methods. This paper calls for a more cautious interpretation of TSAD advancements and encourages the development of more robust and transparent evaluation practices to advance the field and its practical applications.
Is there a way to design powerful AI systems based on machine learning methods that would satisfy probabilistic safety guarantees? With the … (see more)long-term goal of obtaining a probabilistic guarantee that would apply in every context, we consider estimating a context-dependent bound on the probability of violating a given safety specification. Such a risk evaluation would need to be performed at run-time to provide a guardrail against dangerous actions of an AI. Noting that different plausible hypotheses about the world could produce very different outcomes, and because we do not know which one is right, we derive bounds on the safety violation probability predicted under the true but unknown hypothesis. Such bounds could be used to reject potentially dangerous actions. Our main results involve searching for cautious but plausible hypotheses, obtained by a maximization that involves Bayesian posteriors over hypotheses. We consider two forms of this result, in the iid case and in the non-iid case, and conclude with open problems towards turning such theoretical results into practical AI guardrails.