JPerfEvo: A Tool for Tracking Method-Level Performance Changes in Java Projects
Kaveh Shahedi
Maxime Lamothe
Heng Li
Performance regressions and improvements are common phenomena in software development, occurring periodically as software evolves and mature… (see more)s. When developers introduce new changes to a program’s codebase, unforeseen performance variations may arise. Identifying these changes at the method level, however, can be challenging due to the complexity and scale of modern codebases. In this work, we present JPerfEvo, a tool designed to automate the evaluation of the method-level performance impact of each code commit (i.e., the performance variations between the two versions before and after a commit). Leveraging the Java Microbenchmark Harness (JMH) module for benchmarking the modified methods, JPerfEvo instruments their execution and applies robust statistical evaluations to detect performance changes. The tool can classify these changes as performance improvements, regressions, or neutral (i.e., no change), with the change magnitude. We evaluated JPerfEvo on three popular and mature open-source Java projects, demonstrating its effectiveness in identifying performance changes throughout their development histories.
Proceedings of 1st Workshop on Advancing Artificial Intelligence through Theory of Mind
Mouad Abrini
Omri Abend
Dina M. Acklin
Henny Admoni
Gregor Aichinger
Nitay Alon
Zahra Ashktorab
Ashish Atreja
Moises Auron
Alexander Aufreiter
Raghav Awasthi
Soumya Banerjee
Joseph Barnby
Rhea Basappa
Severin Bergsmann
Djallel Bouneffouf
Patrick Callaghan
Marc Cavazza
Thierry Chaminade
Sonia Chernova … (see 88 more)
Mohamed Chetouan
Moumita Choudhury
Axel Cleeremans
J. Cywinski
Fabio Cuzzolin
Hokin Deng
N'yoma Diamond
C. D. Pasquasio
Max J. van Duijn
Mahapatra Dwarikanath
Qingying Gao
Ashok Goel
Rebecca R. Goldstein
Matthew C. Gombolay
Gabriel Enrique Gonzalez
Amar Halilovic
Tobias Halmdienst
Mahimul Islam
Julian Jara-Ettinger
Natalie Kastel
Renana Keydar
Ashish K. Khanna
Mahdi Khoramshahi
Jihyun Kim
Mihyeon Kim
Youngbin Kim
Senka Krivic
Nikita Krasnytskyi
Arun Kumar
Junehyoung Kwon
EunJu Lee
Shane Lee
Peter R. Lewis 0001
Xue Li
Yijiang Li
Michal Lewandowski
Nathan Lloyd
Matthew B. Luebbers
Dezhi Luo
Haiyun Lyu
Dwarikanath Mahapatra
Kamal Maheshwari
Mallika Mainali
P. Mathur
Patrick Mederitsch
Shuwa Miura
Manuel Preston de Miranda
Reuth Mirsky
Shreya Mishra
Nina M. Moorman
Katelyn Morrison
John Muchovej
Bernhard Nessler
Felix Nessler
Hieu Minh Jord Nguyen
Abby Ortego
F. Papay
Antoine Pasquali
Hamed Rahimi
C. Raghu
Amanda L. Royka
Stefan Sarkadi
Jaelle Scheuerman
Simon Schmid
Paul Schrater
Anik Sen
Zahra Sheikhbahaee
Ke Shi
Reid G. Simmons
Nishant Singh
Mason O. Smith
Ramira van der Meulen
Anthia Solaki
Haoran Sun
Viktor Szolga
Matthew E. Taylor
Travis Taylor
Sanne van Waveren
Juan David Vargas
R. Verbrugge
Eitan Wagner
Justin D. Weisz
Ximing Wen
William Yeoh
Wenlong Zhang
Michelle Zhao
Shlomo Zilberstein
Solving Combinatorial Pricing Problems using Embedded Dynamic Programming Models
Quang Minh Bui
José Neto
The combinatorial pricing problem (CPP) is a bilevel problem in which the leader maximizes their revenue by imposing tolls on certain items … (see more)that they can control. Based on the tolls set by the leader, the follower selects a subset of items corresponding to an optimal solution of a combinatorial optimization problem. To accomplish the leader's goal, the tolls need to be sufficiently low to discourage the follower from choosing the items offered by the competitors. In this paper, we derive a single-level reformulation for the CPP by rewriting the follower's problem as a longest path problem using a dynamic programming model, and then taking its dual and applying strong duality. We proceed to solve the reformulation in a dynamic fashion with a cutting plane method. We apply this methodology to 2 distinct dynamic programming models, namely, a novel formulation designated as selection diagram and the well-known decision diagram. We also produce numerical results to evaluate their performances across 3 different specializations of the CPP and a closely related problem that is the knapsack interdiction problem. Our results showcase the potential of the 2 proposed reformulations over the natural value function approach, expanding the set of tools to solve combinatorial bilevel programs.
How Programmers Interact with Multimodal Software Documentation
Deeksha M. Arya
Martin P. Robillard
There is a wide variety of online documentation to learn about a given software technology, and prior research has reported that programmers… (see more) must invest time and effort to identify one that best suits their need. We evaluated five modalities to present information that enable a software document to cater to the different presentation needs of programmers. We developed a prototype tutorial with these modalities on three topics in Java, namely, regular expressions, inheritance, and exception handling. We investigated how people interact with the modalities in the tutorial given a programming topic and a type of task. We conducted a survey study with 56 respondents and confirm that although text content is most useful for solving conceptual tasks, code examples support deeper comprehension of the underlying concepts. Furthermore, we report that respondents' contradicting preferences for the modalities suggest the need to have multiple alternatives in a software tutorial.
A Survey on Model MoErging: Recycling and Routing Among Specialized Experts for Collaborative Learning
Prateek Yadav
Colin Raffel
Mohammed Muqeeth
Lucas Caccia
Haokun Liu
Tianlong Chen
Mohit Bansal
Leshem Choshen
The availability of performant pre-trained models has led to a proliferation of fine-tuned expert models that are specialized to a particula… (see more)r domain or task. Model MoErging methods aim to recycle expert models to create an aggregate system with improved performance or generalization. A key component of MoErging methods is the creation of a router that decides which expert model(s) to use for a particular input or application. The promise, effectiveness, and large design space of MoErging has spurred the development of many new methods over the past few years. This rapid pace of development has made it challenging to compare different MoErging methods, which are rarely compared to one another and are often validated in different experimental setups. To remedy such gaps, we present a comprehensive survey of MoErging methods that includes a novel taxonomy for cataloging key design choices and clarifying suitable applications for each method. Apart from surveying MoErging research, we inventory software tools and applications that make use of MoErging. We additionally discuss related fields of study such as model merging, multitask learning, and mixture-of-experts models. Taken as a whole, our survey provides a unified overview of existing MoErging methods and creates a solid foundation for future work in this burgeoning field.
RLeXplore: Accelerating Research in Intrinsically-Motivated Reinforcement Learning
Mingqi Yuan
Roger Creus Castanyer
Bo Li
Xin Jin
Wenjun Zeng
What makes a good public EV charging station? A revealed preference study
Steven Lamontagne
Ribal Atallah
What makes a good public EV charging station? A revealed preference study
Steven Lamontagne
Ribal Atallah
To determine the optimal locations for electric vehicle charging stations, optimisation models need to predict which charging stations users… (see more) will select. We estimate discrete choice models to predict the usage of charging stations using only readily available information for charging network operators. Our parameter values are estimated from a unique, revealed preferences dataset of charging sessions in Montreal, Quebec. We find that user distance to stations, proximity to home areas, and the number of outlets at each station are significant factors for predicting station usage. Additionally, amenities near charging stations have a neutral effect overall, with some users demonstrating strong preference or aversion for these locations. High variability among the preferences of users highlight the importance of models which incorporate panel effects. Moreover, integrating mixed logit models within the optimization of charging station network design yields high-quality solutions, even when evaluated under other model specifications.
Distilling semantically aware orders for autoregressive image generation
Rishav Pramanik
Antoine Poupon
Juan A. Rodriguez
Masih Aminbeidokhti
David Vazquez
Zhaozheng Yin
Distilling semantically aware orders for autoregressive image generation
Rishav Pramanik
Antoine Poupon
Juan A. Rodriguez
Masih Aminbeidokhti
David Vazquez
Zhaozheng Yin
A flaw in using pre-trained pLLMs in protein-protein interaction inference models
Joseph Szymborski
With the growing pervasiveness of pre-trained protein large language models (pLLMs), pLLM-based methods are increasingly being put forward f… (see more)or the protein-protein interaction (PPI) inference task. Here, we identify and confirm that existing pre-trained pLLMs are a source of data leakage for the downstream PPI task. We characterize the extent of the data leakage problem by training and comparing small and efficient pLLMs on a dataset that controls for data leakage (“strict”) with one that does not (“non-strict”). While data leakage from pre-trained pLLMs cause measurable inflation of testing scores, we find that this does not necessarily extend to other, non-paired biological tasks such as protein keyword annotation. Further, we find no connection between the context-lengths of pLLMs and the performance of pLLM-based PPI inference methods on proteins with sequence lengths that surpass it. Furthermore, we show that pLLM-based and non-pLLM-based models fail to generalize in tasks such as prediction of the human-SARS-CoV-2 PPIs or the effect of point mutations on binding-affinities. This study demonstrates the importance of extending existing protocols for the evaluation of pLLM-based models applied to paired biological datasets and identifies areas of weakness of current pLLM models.
Representation Learning via Non-Contrastive Mutual Information
Zhaohan Daniel Guo
Bernardo Avila Pires
Dale Schuurmans
Bo Dai