Simple and Scalable Strategies to Continually Pre-train Large Language Models
Adam Ibrahim
Benjamin Thérien
Kshitij Gupta
Mats Leon Richter
Quentin Gregory Anthony
Timothee LESORT
Large language models (LLMs) are routinely pre-trained on billions of tokens, only to start the process over again once new data becomes ava… (see more)ilable. A much more efficient solution is to continually pre-train these models, saving significant compute compared to re-training. However, the distribution shift induced by new data typically results in degraded performance on previous data or poor adaptation to the new data. In this work, we show that a simple and scalable combination of learning rate (LR) re-warming, LR re-decaying, and replay of previous data is sufficient to match the performance of fully re-training from scratch on all available data, as measured by the final loss and the average score on several language model (LM) evaluation benchmarks. Specifically, we show this for a weak but realistic distribution shift between two commonly used LLM pre-training datasets (English
Assessing the Security of GitHub Copilot Generated Code - A Targeted Replication Study
Vahid Majdinasab
Michael Joshua Bishop
Shawn Rasheed
Arghavan Moradi Dakhel
Amjed Tahir
Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends
Mina Taraghi
Gianolli Dorcelus
Armstrong Foundjem
Florian Tambon
The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting P… (see more)TMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.
Refining GPT-3 Embeddings with a Siamese Structure for Technical Post Duplicate Detection
Xingfang Wu
Heng Li
Nobukazu Yoshioka
Hironori Washizaki
Reproducible Spinal Cord Quantitative MRI Analysis with the Spinal Cord Toolbox
Jan Valošek
The spinal cord plays a pivotal role in the central nervous system, providing communication between the brain and the body and containing cr… (see more)itical motor and sensory networks. Recent advancements in spinal cord MRI data acquisition and image analysis have shown a potential to improve the diagnostics, prognosis, and management of a variety of pathological conditions. In this review, we first discuss the significance of standardized spinal cord MRI acquisition protocol in multi-center and multi-manufacturer studies. Then, we cover open-access spinal cord MRI datasets, which are important for reproducible science and validation of new methods. Finally, we elaborate on the recent advances in spinal cord MRI data analysis techniques implemented in the open-source software package Spinal Cord Toolbox (SCT).
Rethinking Machine Learning Benchmarks in the Context of Professional Codes of Conduct
Peter Henderson
Jieru Hu
Mona Diab
Simulating Weighted Automata over Sequences and Trees with Transformers
Michael Rizvi
Maude Lizaire
Clara Lacroce
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (see more)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (see more)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (see more)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (see more)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 29 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.
WorkArena: How Capable Are Web Agents at Solving Common Knowledge Work Tasks?
Massimo Caccia
Issam Hadj Laradji
Manuel Del Verme
Tom Marty
Léo Boisvert
Megh Thakkar
David Vazquez
Alexandre Lacoste
We study the use of large language model-based agents for interacting with software via web browsers. Unlike prior work, we focus on measuri… (see more)ng the agents' ability to perform tasks that span the typical daily work of knowledge workers utilizing enterprise software systems. To this end, we propose WorkArena, a remote-hosted benchmark of 33 tasks based on the widely-used ServiceNow platform. We also introduce BrowserGym, an environment for the design and evaluation of such agents, offering a rich set of actions as well as multimodal observations. Our empirical evaluation reveals that while current agents show promise on WorkArena, there remains a considerable gap towards achieving full task automation. Notably, our analysis uncovers a significant performance disparity between open and closed-source LLMs, highlighting a critical area for future exploration and development in the field.