We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Less or More From Teacher: Exploiting Trilateral Geometry For Knowledge Distillation
The extraction of a small number of relevant insights from vast amounts of data is a crucial component of data-driven decision-making. Howev… (see more)er, accomplishing this task requires considerable technical skills, domain expertise, and human labor. This study explores the potential of using Large Language Models (LLMs) to automate the discovery of insights in data, leveraging recent advances in reasoning and code generation techniques. We propose a new evaluation methodology based on a"capture the flag"principle, measuring the ability of such models to recognize meaningful and pertinent information (flags) in a dataset. We further propose two proof-of-concept agents, with different inner workings, and compare their ability to capture such flags in a real-world sales dataset. While the work reported here is preliminary, our results are sufficiently interesting to mandate future exploration by the community.
Deep spectroscopic surveys with the Atacama Large Millimeter/submillimeter Array (ALMA) have revealed that some of the brightest infrared so… (see more)urces in the sky correspond to concentrations of submillimeter galaxies (SMGs) at high redshift. Among these, the SPT2349-56 protocluster system is amongst the most extreme examples given its high source density and integrated star formation rate. We conducted a deep Lyman-alpha line emission survey around SPT2349-56 using the Multi-Unit Spectroscopic Explorer (MUSE) at the Very Large Telescope (VLT) in order to characterize this uniquely dense environment. Taking advantage of the deep three-dimensional nature of this survey, we performed a sensitive search for Lyman-alpha emitters (LAEs) toward the core and northern extension of the protocluster, which correspond to the brightest infrared regions in this field. Using a smoothed narrowband image extracted from the MUSE datacube around the protocluster redshift, we searched for possible extended structures. We identify only three LAEs at
Widely considered a cornerstone of human morality, trust shapes many aspects of human social interactions. In this work, we present a theore… (see more)tical analysis of the
Background: We are witnessing an increasing adoption of machine learning (ML), especially deep learning (DL) algorithms in many software sys… (see more)tems, including safety-critical systems such as health care systems or autonomous driving vehicles. Ensuring the software quality of these systems is yet an open challenge for the research community, mainly due to the inductive nature of ML software systems. Traditionally, software systems were constructed deductively, by writing down the rules that govern the behavior of the system as program code. However, for ML software, these rules are inferred from training data. Few recent research advances in the quality assurance of ML systems have adapted different concepts from traditional software testing, such as mutation testing, to help improve the reliability of ML software systems. However, it is unclear if any of these proposed testing techniques from research are adopted in practice. There is little empirical evidence about the testing strategies of ML engineers. Aims: To fill this gap, we perform the first fine-grained empirical study on ML testing practices in the wild, to identify the ML properties being tested, the followed testing strategies, and their implementation throughout the ML workflow. Method: First, we systematically summarized the different testing strategies (e.g., Oracle Approximation), the tested ML properties (e.g., Correctness, Bias, and Fairness), and the testing methods (e.g., Unit test) from the literature. Then, we conducted a study to understand the practices of testing ML software. Results: In our findings: 1) we identified four (4) major categories of testing strategy including Grey-box, White-box, Black-box, and Heuristic-based techniques that are used by the ML engineers to find software bugs. 2) We identified 16 ML properties that are tested in the ML workflow.
There is increasing adoption of artificial intelligence in drug discovery. However, existing studies use machine learning to mainly utilize … (see more)the chemical structures of molecules but ignore the vast textual knowledge available in chemistry. Incorporating textual knowledge enables us to realize new drug design objectives, adapt to text-based instructions and predict complex biological activities. Here we present a multi-modal molecule structure-text model, MoleculeSTM, by jointly learning molecules' chemical structures and textual descriptions via a contrastive learning strategy. To train MoleculeSTM, we construct a large multi-modal dataset, namely, PubChemSTM, with over 280,000 chemical structure-text pairs. To demonstrate the effectiveness and utility of MoleculeSTM, we design two challenging zero-shot tasks based on text instructions, including structure-text retrieval and molecule editing. MoleculeSTM has two main properties: open vocabulary and compositionality via natural language. In experiments, MoleculeSTM obtains the state-of-the-art generalization ability to novel biochemical concepts across various benchmarks.
Network design problems constitute an important family of combinatorial optimization problems for which numerous exact and heuristic algorit… (see more)hms have been developed over the last few decades. Two central problems in this family are the multi-commodity, capacitated, fixed charge network design problem (MCFNDP) and its stochastic counterpart, the two-stage MCFNDP with recourse. These are standard problems that often serve as work benches for devising and testing models and algorithms in stylized but close-to-realistic settings. The purpose of this paper is to introduce two flexible, high-speed generators capable of simulating a wide range of settings for both the deterministic and stochastic MCFNDPs. We hope that, by facilitating systematic experimentation with new and larger sets of instances, these generators will lead to a more thorough assessment of the performance achieved by exact and heuristic solution methods in both deterministic and stochastic settings. We also hope that making these generators available will promote the reproducibility and comparability of published research.
The BigCode community, an open-scientific collaboration working on the responsible development of Large Language Models for Code (Code LLMs)… (see more), introduces StarCoder and StarCoderBase: 15.5B parameter models with 8K context length, infilling capabilities and fast large-batch inference enabled by multi-query attention. StarCoderBase is trained on 1 trillion tokens sourced from The Stack, a large collection of permissively licensed GitHub repositories with inspection tools and an opt-out process. We fine-tuned StarCoderBase on 35B Python tokens, resulting in the creation of StarCoder. We perform the most comprehensive evaluation of Code LLMs to date and show that StarCoderBase outperforms every open Code LLM that supports multiple programming languages and matches or outperforms the OpenAI code-cushman-001 model. Furthermore, StarCoder outperforms every model that is fine-tuned on Python and still retains its performance on other programming languages. We take several important steps towards a safe open-access model release, including an improved PII redaction pipeline and a novel attribution tracing tool, and make the StarCoder models publicly available under a more commercially viable version of the Open Responsible AI Model license.