Portrait of Doina Precup

Doina Precup

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, McGill University, School of Computer Science
Research Team Leader, Google DeepMind

Biography

Doina Precup combines teaching at McGill University with fundamental research on reinforcement learning, in particular AI applications in areas of significant social impact, such as health care. She is interested in machine decision-making in situations where uncertainty is high.

In addition to heading the Montreal office of Google DeepMind, Precup is a Senior Fellow of the Canadian Institute for Advanced Research and a Fellow of the Association for the Advancement of Artificial Intelligence.

Her areas of speciality are artificial intelligence, machine learning, reinforcement learning, reasoning and planning under uncertainty, and applications.

Current Students

Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Master's Research - McGill University
Postdoctorate - McGill University
Master's Research - McGill University
Research Intern - McGill University
PhD - McGill University
Postdoctorate - Université de Montréal
Principal supervisor :
PhD - McGill University
Master's Research - McGill University
Principal supervisor :
Research Intern - McGill University
PhD - McGill University
Principal supervisor :
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :
Research Intern - McGill University
PhD - McGill University
Principal supervisor :
Collaborating researcher - McGill University
Master's Research - McGill University
Master's Research - Université de Montréal
PhD - McGill University
Co-supervisor :
PhD - McGill University
PhD - McGill University
Co-supervisor :
Collaborating researcher - McGill University
Principal supervisor :
PhD - McGill University
Undergraduate - McGill University
Master's Research - Université de Montréal
Principal supervisor :
PhD - McGill University
PhD - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :

Publications

Connecting Weighted Automata and Recurrent Neural Networks through Spectral Learning
In this paper, we unravel a fundamental connection between weighted finite automata~(WFAs) and second-order recurrent neural networks~(2-RNN… (see more)s): in the case of sequences of discrete symbols, WFAs and 2-RNNs with linear activation functions are expressively equivalent. Motivated by this result, we build upon a recent extension of the spectral learning algorithm to vector-valued WFAs and propose the first provable learning algorithm for linear 2-RNNs defined over sequences of continuous input vectors. This algorithm relies on estimating low rank sub-blocks of the so-called Hankel tensor, from which the parameters of a linear 2-RNN can be provably recovered. The performances of the proposed method are assessed in a simulation study.
Resolving Event Coreference with Supervised Representation Learning and Clustering-Oriented Regularization
Kian Kenyon-Dean
We present an approach to event coreference resolution by developing a general framework for clustering that uses supervised representation … (see more)learning. We propose a neural network architecture with novel Clustering-Oriented Regularization (CORE) terms in the objective function. These terms encourage the model to create embeddings of event mentions that are amenable to clustering. We then use agglomerative clustering on these embeddings to build event coreference chains. For both within- and cross-document coreference on the ECB+ corpus, our model obtains better results than models that require significantly more pre-annotated information. This work provides insight and motivating results for a new general approach to solving coreference and clustering problems with representation learning.
Nonlinear Weighted Finite Automata
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (see more)esses of nonlinear models in machine learning, it is natural to wonder whether extending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinear WFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFA and relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Nonlinear Weighted Finite Automata
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (see more)esses of nonlinear models in machine learning, it is natural to wonder whether extending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinear WFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFA and relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Optimizing Home Energy Management and Electric Vehicle Charging with Reinforcement Learning
Di Wu
Vincent Francois-Lavet
Benoit Boulet
Smart grids are advancing the management efficiency and security of power grids with the integration of energy storage, distributed controll… (see more)ers, and advanced meters. In particular, with the increasing prevalence of residential automation devices and distributed renewable energy generation, residential energy management is now drawing more attention. Meanwhile, the increasing adoption of electric vehicle (EV) brings more challenges and opportunities for smart residential energy management. This paper formalizes energy management for the residential home with EV charging as a Markov Decision Process and proposes reinforcement learning (RL) based control algorithms to address it. The objective of the proposed algorithms is to minimize the long-term operating cost. We further use a recurrent neural network (RNN) to model the electricity demand as a preprocessing step. Both the RNN prediction and latent representations are used as additional state features for the RL based control algorithms. Experiments on real-world data show that the proposed algorithms can significantly reduce the operating cost and peak power consumption compared to baseline control algorithms.
Temporal Regularization for Markov Decision Process
Several applications of Reinforcement Learning suffer from instability due to high variance. This is especially prevalent in high dimensiona… (see more)l domains. Regularization is a commonly used technique in machine learning to reduce variance, at the cost of introducing some bias. Most existing regularization techniques focus on spatial (perceptual) regularization. Yet in reinforcement learning, due to the nature of the Bellman equation, there is an opportunity to also exploit temporal regularization based on smoothness in value estimates over trajectories. This paper explores a class of methods for temporal regularization. We formally characterize the bias induced by this technique using Markov chain concepts. We illustrate the various characteristics of temporal regularization via a sequence of simple discrete and continuous MDPs, and show that the technique provides improvement even in high-dimensional Atari games.
Neural Network Based Nonlinear Weighted Finite Automata
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (see more)esses of nonlinear models in machine learning, it is natural to wonder whether ex-tending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinearWFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFAand relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real-world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Predicting Future Disease Activity and Treatment Responders for Multiple Sclerosis Patients Using a Bag-of-Lesions Brain Representation
Andrew Doyle
Douglas Arnold
World Knowledge for Reading Comprehension: Rare Entity Prediction with Hierarchical LSTMs Using External Descriptions
Teng Long
Emmanuel Bengio
Ryan Lowe
Humans interpret texts with respect to some background information, or world knowledge, and we would like to develop automatic reading compr… (see more)ehension systems that can do the same. In this paper, we introduce a task and several models to drive progress towards this goal. In particular, we propose the task of rare entity prediction: given a web document with several entities removed, models are tasked with predicting the correct missing entities conditioned on the document context and the lexical resources. This task is challenging due to the diversity of language styles and the extremely large number of rare entities. We propose two recurrent neural network architectures which make use of external knowledge in the form of entity descriptions. Our experiments show that our hierarchical LSTM model performs significantly better at the rare entity prediction task than those that do not make use of external resources.
Bayesian and grAphical Models for Biomedical Imaging
M. Cardoso
Ivor J. A. Simpson
Annemie Ribbens