Portrait of Harry Zhao is unavailable

Harry Zhao

PhD - McGill University
Supervisor
Co-supervisor

Publications

Consciousness-Inspired Spatio-Temporal Abstractions for Better Generalization in Reinforcement Learning
Harry Zhao
Mingde Zhao
Safa Alver
Harm van Seijen
Romain Laroche
Inspired by human conscious planning, we propose Skipper, a model-based reinforcement learning framework utilizing spatio-temporal abstracti… (see more)ons to generalize better in novel situations. It automatically decomposes the given task into smaller, more manageable subtasks, and thus enables sparse decision-making and focused computation on the relevant parts of the environment. The decomposition relies on the extraction of an abstracted proxy problem represented as a directed graph, in which vertices and edges are learned end-to-end from hindsight. Our theoretical analyses provide performance guarantees under appropriate assumptions and establish where our approach is expected to be helpful. Generalization-focused experiments validate Skipper’s significant advantage in zero-shot generalization, compared to some existing state-of-the-art hierarchical planning methods.
Temporal Abstractions-Augmented Temporally Contrastive Learning: An Alternative to the Laplacian in RL
Akram Erraqabi
Marlos C. Machado
Harry Zhao
Mingde Zhao
Sainbayar Sukhbaatar
Alessandro Lazaric
Ludovic Denoyer
In reinforcement learning, the graph Laplacian has proved to be a valuable tool in the task-agnostic setting, with applications ranging from… (see more) skill discovery to reward shaping. Recently, learning the Laplacian representation has been framed as the optimization of a temporally-contrastive objective to overcome its computational limitations in large (or continuous) state spaces. However, this approach requires uniform access to all states in the state space, overlooking the exploration problem that emerges during the representation learning process. In this work, we propose an alternative method that is able to recover, in a non-uniform-prior setting, the expressiveness and the desired properties of the Laplacian representation. We do so by combining the representation learning with a skill-based covering policy, which provides a better training distribution to extend and refine the representation. We also show that a simple augmentation of the representation objective with the learned temporal abstractions improves dynamics-awareness and helps exploration. We find that our method succeeds as an alternative to the Laplacian in the non-uniform setting and scales to challenging continuous control environments. Finally, even if our method is not optimized for skill discovery, the learned skills can successfully solve difficult continuous navigation tasks with sparse rewards, where standard skill discovery approaches are no so effective.