Portrait of Sarath Chandar Anbil Parthipan

Sarath Chandar Anbil Parthipan

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Indian Institute of Technology Madras
Research Topics
Deep Learning
Medical Machine Learning
Natural Language Processing
Online Learning
Optimization
Recurrent Neural Networks
Reinforcement Learning
Representation Learning

Biography

Sarath Chandar is an assistant professor at Polytechnique Montreal's Department of Computer and Software Engineering, where he leads the Chandar Research Lab. He is also a Core Academic Member at Mila – Quebec Artificial Intelligence Institute and holds a Canada CIFAR AI Chair and the Canada Research Chair in Lifelong Machine Learning.

Chandar’s research interests include lifelong learning, deep learning, optimization, reinforcement learning and natural language processing. To promote research in lifelong learning, Chandar created the Conference on Lifelong Learning Agents (CoLLAs) in 2022, for which he served as program chair in 2022 and 2023.

He has a PhD from Université de Montréal and an MSc (By Research) from the Indian Institute of Technology Madras.

Current Students

Master's Research - Université de Montréal
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
Principal supervisor :
Independent visiting researcher - no
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Université de Montréal
Principal supervisor :
Research Intern - Université de Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Principal supervisor :
PhD - Polytechnique Montréal
Master's Research - Université de Montréal
Independent visiting researcher - NA
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
Co-supervisor :
PhD - Polytechnique Montréal
Postdoctorate - Polytechnique Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Master's Research - Université de Montréal
Postdoctorate - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Independent visiting researcher
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
Co-supervisor :
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal

Publications

Context-Aware Assistant Selection for Improved Inference Acceleration with Large Language Models
Jerry Huang
Prasanna Parthasarathi
Mehdi Rezagholizadeh
Exploring Quantization for Efficient Pre-Training of Transformer Language Models
Kamran Chitsaz
Quentin Fournier
Gonccalo Mordido
The increasing scale of Transformer models has led to an increase in their pre-training computational requirements. While quantization has p… (see more)roven to be effective after pre-training and during fine-tuning, applying quantization in Transformers during pre-training has remained largely unexplored at scale for language modeling. This study aims to explore the impact of quantization for efficient pre-training of Transformers, with a focus on linear layer components. By systematically applying straightforward linear quantization to weights, activations, gradients, and optimizer states, we assess its effects on model efficiency, stability, and performance during training. By offering a comprehensive recipe of effective quantization strategies to be applied during the pre-training of Transformers, we promote high training efficiency from scratch while retaining language modeling ability. Code is available at https://github.com/chandar-lab/EfficientLLMs.
Should We Attend More or Less? Modulating Attention for Fairness
Abdelrahman Zayed
Goncalo Mordido
Samira Shabanian
Lookbehind-SAM: k steps back, 1 step forward
Goncalo Mordido
Pranshu Malviya
Aristide Baratin
A Reinforcement Learning Pipeline for Band Gap-directed Crystal Generation
Prashant Govindarajan
Mathieu Reymond
Santiago Miret
Antoine Clavaud
Mariano Phielipp
Property-driven AI-automated material discovery presents unique challenges owing to the complex nature of the chemical structural space and … (see more)computationally expensive simulations. For crystalline solids, the band gap is an important property for designing semiconductors and batteries. However, optimizing crystals for a target band gap is difficult and not well-explored. Reinforcement learning (RL) shows promise towards optimizing crystals, as it can freely explore the chemical space. However, it relies on regular band gap evaluations, which can only be accurately computed through expensive Density Functional Theory (DFT) simulations. In this study, we propose an active learning-inspired pipeline that combines RL and DFT simulations for optimizing crystal compositions given a target band gap. The pipeline includes an RL policy for predicting atom types and a band gap network that is fine-tuned with DFT data. Preliminary results indicate the need for furthering the state-of-the-art to address the inherent challenges of the problem.
Language Model-In-The-Loop: Data Optimal Approach to Recommend Actions in Text Games
Arjun V Sudhakar
Prasanna Parthasarathi
Janarthanan Rajendran
Large Language Models (LLMs) have demonstrated superior performance in language understanding benchmarks. A recent use case for LLMs involve… (see more)s training decision-making agents over textual information. The existing approach leverages LLM's linguistic priors for action candidate recommendations in text games, i.e., to operate without environment-provided actions. However, adapting LLMs to specific games/tasks requires a massive amount of annotated human gameplay. Moreover, in the existing approach, the language model was kept frozen during an agent's training process, which limits learning from in-game knowledge about the world. Hence, we explore strategies to adapt the language model for candidate recommendation with in-game transition in an online learning fashion to mitigate reliance on human-annotated gameplays, which are costly to acquire. In this paper, we propose in-game transition selection methods to adapt the LLM in the loop, reducing the dependency on using human-annotated gameplays while improving performance and convergence. Our method demonstrates a 53% relative improvement in average game score over the previous state-of-the-art model, achieving more than twice the convergence rate in a full-annotated dataset setting. Furthermore, even with only 10% of human annotation, we surpassed the 100\% state-of-the-art performance benchmark.
Promoting Exploration in Memory-Augmented Adam using Critical Momenta
Pranshu Malviya
Goncalo Mordido
Aristide Baratin
Reza Babanezhad Harikandeh
Jerry Huang
Razvan Pascanu
Adaptive gradient-based optimizers, particularly Adam, have left their mark in training large-scale deep learning models. The strength of su… (see more)ch optimizers is that they exhibit fast convergence while being more robust to hyperparameter choice. However, they often generalize worse than non-adaptive methods. Recent studies have tied this performance gap to flat minima selection: adaptive methods tend to find solutions in sharper basins of the loss landscape, which in turn hurts generalization. To overcome this issue, we propose a new memory-augmented version of Adam that promotes exploration towards flatter minima by using a buffer of critical momentum terms during training. Intuitively, the use of the buffer makes the optimizer overshoot outside the basin of attraction if it is not wide enough. We empirically show that our method improves the performance of several variants of Adam on standard supervised language modelling and image classification tasks.
Why Don't Prompt-Based Fairness Metrics Correlate?
Abdelrahman Zayed
Goncalo Mordido
Ioana Baldini
The widespread use of large language models has brought up essential questions about the potential biases these models might learn. This led… (see more) to the development of several metrics aimed at evaluating and mitigating these biases. In this paper, we first demonstrate that prompt-based fairness metrics exhibit poor agreement, as measured by correlation, raising important questions about the reliability of fairness assessment using prompts. Then, we outline six relevant reasons why such a low correlation is observed across existing metrics. Based on these insights, we propose a method called Correlated Fairness Output (CAIRO) to enhance the correlation between fairness metrics. CAIRO augments the original prompts of a given fairness metric by using several pre-trained language models and then selects the combination of the augmented prompts that achieves the highest correlation across metrics. We show a significant improvement in Pearson correlation from 0.3 and 0.18 to 0.90 and 0.98 across metrics for gender and religion biases, respectively. Our code is available at https://github.com/chandar-lab/CAIRO.
A Deep Dive into the Trade-Offs of Parameter-Efficient Preference Alignment Techniques
Megh Thakkar
Quentin Fournier
Matthew D Riemer
Pin-Yu Chen
Payel Das
BindGPT: A Scalable Framework for 3D Molecular Design via Language Modeling and Reinforcement Learning
Artem Zholus
Maksim Kuznetsov
Roman Schutski
Shayakhmetov Rim
Daniil Polykovskiy
Alex Zhavoronkov
Generating novel active molecules for a given protein is an extremely challenging task for generative models that requires an understanding … (see more)of the complex physical interactions between the molecule and its environment. In this paper, we present a novel generative model, BindGPT which uses a conceptually simple but powerful approach to create 3D molecules within the protein's binding site. Our model produces molecular graphs and conformations jointly, eliminating the need for an extra graph reconstruction step. We pretrain BindGPT on a large-scale dataset and fine-tune it with reinforcement learning using scores from external simulation software. We demonstrate how a single pretrained language model can serve at the same time as a 3D molecular generative model, conformer generator conditioned on the molecular graph, and a pocket-conditioned 3D molecule generator. Notably, the model does not make any representational equivariance assumptions about the domain of generation. We show how such simple conceptual approach combined with pretraining and scaling can perform on par or better than the current best specialized diffusion models, language models, and graph neural networks while being two orders of magnitude cheaper to sample.
A responsible framework for applying artificial intelligence on medical images and signals at the point-of-care: the PACS-AI platform.
Pascal Thériault-Lauzier
Denis Cobin
Olivier Tastet
Élodie Labrecque Langlais
B. Taji
Guson Kang
A. Chong
Derek So
An Tang
J. W. Gichoya
Pierre-Luc Deziel
Julie G. Hussin
Samuel Kadoury
Robert Avram
On the Costs and Benefits of Adopting Lifelong Learning for Software Analytics -- Empirical Study on Brown Build and Risk Prediction
Doriane Olewicki
Sarra Habchi
Mathieu Nayrolles
Mojtaba Faramarzi
Bram Adams
Nowadays, software analytics tools using machine learning (ML) models to, for example, predict the risk of a code change are well establishe… (see more)d. However, as the goals of a project shift over time, and developers and their habits change, the performance of said models tends to degrade (drift) over time. Current retraining practices typically require retraining a new model from scratch on a large updated dataset when performance decay is observed, thus incurring a computational cost; also there is no continuity between the models as the past model is discarded and ignored during the new model training. Even though the literature has taken interest in online learning approaches, those have rarely been integrated and evaluated in industrial environments. This paper evaluates the use of lifelong learning (LL) for industrial use cases at Ubisoft, evaluating both the performance and the required computational effort in comparison to the retraining-from-scratch approaches commonly used by the industry. LL is used to continuously build and maintain ML-based software analytics tools using an incremental learner that progressively updates the old model using new data. To avoid so-called"catastrophic forgetting"of important older data points, we adopt a replay buffer of older data, which still allows us to drastically reduce the size of the overall training dataset, and hence model training time.