Injury and violence in the context of sustainable development
Kidist Bartolomeos
Ryan Lett
Respicious Boniface
Victoria Munthali
Tarek Razek
Dan Deckelbaum
David Bracco
Ermiyas Belay
Fitsum Kifle
David Ulrich Dalle
Celestin Bilong Mbangtang
Arsene Daniel Nyalundja
Jondre Macaraeg
Irene Dzirasa
Ulrick Sidney Kanmounye
Delanyo Dovlo
Kwadwo Koram
Eugene Nyarko
Desmond T. Jumbam
Emnet Tesfay Shimber … (see 180 more)
Taylor Jaraczewski
Maria Sgro
Ajiel Mae Basmayor
Asegid Ergete
Mary Schroeder
Adam Gyedu
Emmanuel Nakua
Peter Donkor
Charles Mock
Atalel Awedew
Halid Melkamu
Sisay Bekele
Berhanu Hailemariam
Enku Shiferaw
Yishak Shiferaw
Wubetie Yirdaw
Debojit Basak
Deepa Kizhakke Veetil
Nobhojit Roy
Martin Gerdin Wärnberg
Santosh Rath
Mohammed A.S Abdullahi
Kefas Mbaya
Abubakar Kakasanda
Stephanie Danjuma
Hector Olasoji
Alemayehu Bedada
Mpapho Joseph Motsumi
Shimelis Genna Hamda
Demuma Amdisa
Getachew Tilahun
Matthew Boroditsky
Mark Hill
Roy Hilzenrat
Rachel Livergant
Jayd Adams
Catherine Binda
Allison Chhor
Helen Hsiao
Faizal Haji
Esther Chin
Felix Oyania
Caroline Q. Stephens
Sarah Ullrich
Meera Kotagal
Francis Bajunirwe
Doruk Ozgediz
Dionysia Kravarioti
Lye-Yeng Wong
Tsegazeab Laeke Teklemariam
Abenezer Tirsit
Tewodros Liyew
Mark Ferguson
Timothy Plackett
Jaymie Claire Henry
Meseret Abeza
Seye Mesfin Minas
Maryse Bouchard
Dimuthu Tennakoon
Rahul Burra
Fleming Mathew
Annabelle Jones
Sargun Virk
Shlok Patel
Tanaz Vaghaiwalla
James Hudspeth
Tracy Rabin
Virginia Rowthorn
Raymond R. Price
Nakul Raykar
Gilgamesh Eamer
Stephen Mutiso
Yvette Kisaka
Gladwell Gathecha
Ronald Lett
Chibuike Onu
Emmanuel Ameh
Matthias Igoche
Paschal Anyanwu
Eunice Onuh
Oikeh Ojeamen
Edith Terna Yawe
Amina Abubakar
Yakubu Ashoms
Hadiza Suleiman
Naomi Musa
Daniel Kisitu Kyengera
Netsanet Abebe
Richard Gardener
Nebyou Seyoum Abebe
Henok T/Silasie Zeleke
Kacylia Roy Proulx
Shreenik Kundu
Boaz Laor
Riya Sawhney
Taylor Wurdeman
Fabio Botelho
Ayla Gerk
Elena Guadagno
Mengistu Ayele
Azarias Kassahun
Tsegazeab Laeke
Mestet Yibeltal
Bereket Hailu
Ermias Fikru
Shemsedin Ibro
Abdeta Workineh
Fikadu Balcha
Fira Abamecha
Sheka Shemsi
Abdullah Saleh Alruwaili
Gabriel Rodriguez
Anna Jose
Shahd Ebied
Samuel Girma
Abigael Abiy
Hussien Endris Assen
Kalab Tesfaye
Kassaye Demeke
Aklilu Yiheyis
Khalid Jemal
Demeke Yilkal
Ashenafi Amsalu
Lema Derseh
Yophtahe W/Gerima
Tadesse Belayneh
Mekuanint Tiruneh
Almaw Bitew
Sewbesew Yitayih
Tadesse Awoke
Chanyalew Worku
Anissa Mohammed
Mohammed Alemu
Mohammed Yesuf
Fantu Mamo
Kegnie Shitu
Biks Liyew
Ayenew Gucho
Gezahegn Tilahun
Timothy Love
Andrew Chew
Brian Kasagga
Berjo Takoutsing
Obuku Ekwaro
Emmanuel Elobu
Degisew Dersso Mengistu
Alex Zhuang
Bethlehem Shiferew
Gelila Mengistu
Ayalew Zewdie
Nahom Tadelle
Alegnta Gebreyesus
Elise Presser
Katie Iverson
Christopher Dodgion
Thomas G. Weiser
Rachel Koch
Nichole Starr
Davy Lau
Irena Zivkovic
Shahrzad Joharifard
Emilie Joos
Naisan Garraway
Francesca Vituci
Eric O’Flynn
Ines Péric
Léa Simon
Geoffrey Ibbotson
Tsion Seyoum
Aklilu Azazh
Lemlem Beza
Ifeanyichukwu Onah
Chijioke Chukwuma
Dagim Berhanu
Jason Shenoi
Nick Sears
Yoseph Bedore
Richard Caplan
Wongel Tena Shale
invaluable
Injury and violence in the context of sustainable development
Kidist Bartolomeos
Ryan Lett
Respicious Boniface
Victoria Munthali
Tarek Razek
Dan Deckelbaum
David Bracco
Ermiyas Belay
Fitsum Kifle
David Ulrich Dalle
Celestin Bilong Mbangtang
Arsene Daniel Nyalundja
Jondre Macaraeg
Irene Dzirasa
Ulrick Sidney Kanmounye
Delanyo Dovlo
Kwadwo Koram
Eugene Nyarko
Desmond T. Jumbam
Emnet Tesfay Shimber … (see 180 more)
Taylor Jaraczewski
Maria Sgro
Ajiel Mae Basmayor
Asegid Ergete
Mary Schroeder
Adam Gyedu
Emmanuel Nakua
Peter Donkor
Charles Mock
Atalel Awedew
Halid Melkamu
Sisay Bekele
Berhanu Hailemariam
Enku Shiferaw
Yishak Shiferaw
Wubetie Yirdaw
Debojit Basak
Deepa Kizhakke Veetil
Nobhojit Roy
Martin Gerdin Wärnberg
Santosh Rath
Mohammed A.S Abdullahi
Kefas Mbaya
Abubakar Kakasanda
Stephanie Danjuma
Hector Olasoji
Alemayehu Bedada
Mpapho Joseph Motsumi
Shimelis Genna Hamda
Demuma Amdisa
Getachew Tilahun
Matthew Boroditsky
Mark Hill
Roy Hilzenrat
Rachel Livergant
Jayd Adams
Catherine Binda
Allison Chhor
Helen Hsiao
Faizal Haji
Esther Chin
Felix Oyania
Caroline Q. Stephens
Sarah Ullrich
Meera Kotagal
Francis Bajunirwe
Doruk Ozgediz
Dionysia Kravarioti
Lye-Yeng Wong
Tsegazeab Laeke Teklemariam
Abenezer Tirsit
Tewodros Liyew
Mark Ferguson
Timothy Plackett
Jaymie Claire Henry
Meseret Abeza
Seye Mesfin Minas
Maryse Bouchard
Dimuthu Tennakoon
Rahul Burra
Fleming Mathew
Annabelle Jones
Sargun Virk
Shlok Patel
Tanaz Vaghaiwalla
James Hudspeth
Tracy Rabin
Virginia Rowthorn
Raymond R. Price
Nakul Raykar
Gilgamesh Eamer
Stephen Mutiso
Yvette Kisaka
Gladwell Gathecha
Ronald Lett
Chibuike Onu
Emmanuel Ameh
Matthias Igoche
Paschal Anyanwu
Eunice Onuh
Oikeh Ojeamen
Edith Terna Yawe
Amina Abubakar
Yakubu Ashoms
Hadiza Suleiman
Naomi Musa
Daniel Kisitu Kyengera
Netsanet Abebe
Richard Gardener
Nebyou Seyoum Abebe
Henok T/Silasie Zeleke
Kacylia Roy Proulx
Shreenik Kundu
Boaz Laor
Riya Sawhney
Taylor Wurdeman
Fabio Botelho
Ayla Gerk
Elena Guadagno
Mengistu Ayele
Azarias Kassahun
Tsegazeab Laeke
Mestet Yibeltal
Bereket Hailu
Ermias Fikru
Shemsedin Ibro
Abdeta Workineh
Fikadu Balcha
Fira Abamecha
Sheka Shemsi
Abdullah Saleh Alruwaili
Gabriel Rodriguez
Anna Jose
Shahd Ebied
Samuel Girma
Abigael Abiy
Hussien Endris Assen
Kalab Tesfaye
Kassaye Demeke
Aklilu Yiheyis
Khalid Jemal
Demeke Yilkal
Ashenafi Amsalu
Lema Derseh
Yophtahe W/Gerima
Tadesse Belayneh
Mekuanint Tiruneh
Almaw Bitew
Sewbesew Yitayih
Tadesse Awoke
Chanyalew Worku
Anissa Mohammed
Mohammed Alemu
Mohammed Yesuf
Fantu Mamo
Kegnie Shitu
Biks Liyew
Ayenew Gucho
Gezahegn Tilahun
Timothy Love
Andrew Chew
Brian Kasagga
Berjo Takoutsing
Obuku Ekwaro
Emmanuel Elobu
Degisew Dersso Mengistu
Alex Zhuang
Bethlehem Shiferew
Gelila Mengistu
Ayalew Zewdie
Nahom Tadelle
Alegnta Gebreyesus
Elise Presser
Katie Iverson
Christopher Dodgion
Thomas G. Weiser
Rachel Koch
Nichole Starr
Davy Lau
Irena Zivkovic
Shahrzad Joharifard
Emilie Joos
Naisan Garraway
Francesca Vituci
Eric O’Flynn
Ines Péric
Léa Simon
Geoffrey Ibbotson
Tsion Seyoum
Aklilu Azazh
Lemlem Beza
Ifeanyichukwu Onah
Chijioke Chukwuma
Dagim Berhanu
Jason Shenoi
Nick Sears
Yoseph Bedore
Richard Caplan
Wongel Tena Shale
invaluable
Injury and violence in the context of sustainable development
Kidist Bartolomeos
Ryan Lett
Respicious Boniface
Victoria Munthali
Tarek Razek
Dan Deckelbaum
David Bracco
Ermiyas Belay
Fitsum Kifle
David Ulrich Dalle
Celestin Bilong Mbangtang
Arsene Daniel Nyalundja
Jondre Macaraeg
Irene Dzirasa
Ulrick Sidney Kanmounye
Delanyo Dovlo
Kwadwo Koram
Eugene Nyarko
Desmond T. Jumbam
Emnet Tesfay Shimber … (see 180 more)
Taylor Jaraczewski
Maria Sgro
Ajiel Mae Basmayor
Asegid Ergete
Mary Schroeder
Adam Gyedu
Emmanuel Nakua
Peter Donkor
Charles Mock
Atalel Awedew
Halid Melkamu
Sisay Bekele
Berhanu Hailemariam
Enku Shiferaw
Yishak Shiferaw
Wubetie Yirdaw
Debojit Basak
Deepa Kizhakke Veetil
Nobhojit Roy
Martin Gerdin Wärnberg
Santosh Rath
Mohammed A.S Abdullahi
Kefas Mbaya
Abubakar Kakasanda
Stephanie Danjuma
Hector Olasoji
Alemayehu Bedada
Mpapho Joseph Motsumi
Shimelis Genna Hamda
Demuma Amdisa
Getachew Tilahun
Matthew Boroditsky
Mark Hill
Roy Hilzenrat
Rachel Livergant
Jayd Adams
Catherine Binda
Allison Chhor
Helen Hsiao
Faizal Haji
Esther Chin
Felix Oyania
Caroline Q. Stephens
Sarah Ullrich
Meera Kotagal
Francis Bajunirwe
Doruk Ozgediz
Dionysia Kravarioti
Lye-Yeng Wong
Tsegazeab Laeke Teklemariam
Abenezer Tirsit
Tewodros Liyew
Mark Ferguson
Timothy Plackett
Jaymie Claire Henry
Meseret Abeza
Seye Mesfin Minas
Maryse Bouchard
Dimuthu Tennakoon
Rahul Burra
Fleming Mathew
Annabelle Jones
Sargun Virk
Shlok Patel
Tanaz Vaghaiwalla
James Hudspeth
Tracy Rabin
Virginia Rowthorn
Raymond R. Price
Nakul Raykar
Gilgamesh Eamer
Stephen Mutiso
Yvette Kisaka
Gladwell Gathecha
Ronald Lett
Chibuike Onu
Emmanuel Ameh
Matthias Igoche
Paschal Anyanwu
Eunice Onuh
Oikeh Ojeamen
Edith Terna Yawe
Amina Abubakar
Yakubu Ashoms
Hadiza Suleiman
Naomi Musa
Daniel Kisitu Kyengera
Netsanet Abebe
Richard Gardener
Nebyou Seyoum Abebe
Henok T/Silasie Zeleke
Kacylia Roy Proulx
Shreenik Kundu
Boaz Laor
Riya Sawhney
Taylor Wurdeman
Fabio Botelho
Ayla Gerk
Elena Guadagno
Mengistu Ayele
Azarias Kassahun
Tsegazeab Laeke
Mestet Yibeltal
Bereket Hailu
Ermias Fikru
Shemsedin Ibro
Abdeta Workineh
Fikadu Balcha
Fira Abamecha
Sheka Shemsi
Abdullah Saleh Alruwaili
Gabriel Rodriguez
Anna Jose
Shahd Ebied
Samuel Girma
Abigael Abiy
Hussien Endris Assen
Kalab Tesfaye
Kassaye Demeke
Aklilu Yiheyis
Khalid Jemal
Demeke Yilkal
Ashenafi Amsalu
Lema Derseh
Yophtahe W/Gerima
Tadesse Belayneh
Mekuanint Tiruneh
Almaw Bitew
Sewbesew Yitayih
Tadesse Awoke
Chanyalew Worku
Anissa Mohammed
Mohammed Alemu
Mohammed Yesuf
Fantu Mamo
Kegnie Shitu
Biks Liyew
Ayenew Gucho
Gezahegn Tilahun
Timothy Love
Andrew Chew
Brian Kasagga
Berjo Takoutsing
Obuku Ekwaro
Emmanuel Elobu
Degisew Dersso Mengistu
Alex Zhuang
Bethlehem Shiferew
Gelila Mengistu
Ayalew Zewdie
Nahom Tadelle
Alegnta Gebreyesus
Elise Presser
Katie Iverson
Christopher Dodgion
Thomas G. Weiser
Rachel Koch
Nichole Starr
Davy Lau
Irena Zivkovic
Shahrzad Joharifard
Emilie Joos
Naisan Garraway
Francesca Vituci
Eric O’Flynn
Ines Péric
Léa Simon
Geoffrey Ibbotson
Tsion Seyoum
Aklilu Azazh
Lemlem Beza
Ifeanyichukwu Onah
Chijioke Chukwuma
Dagim Berhanu
Jason Shenoi
Nick Sears
Yoseph Bedore
Richard Caplan
Wongel Tena Shale
invaluable
A Large Recurrent Action Model: xLSTM enables Fast Inference for Robotics Tasks
Thomas Schmied
Thomas Adler
Vihang P. Patil
Maximilian Beck
Korbinian Poppel
Johannes Brandstetter
Günter Klambauer
Sepp Hochreiter
In recent years, there has been a trend in the field of Reinforcement Learning (RL) towards large action models trained offline on large-sca… (see more)le datasets via sequence modeling. Existing models are primarily based on the Transformer architecture, which result in powerful agents. However, due to slow inference times, Transformer-based approaches are impractical for real-time applications, such as robotics. Recently, modern recurrent architectures, such as xLSTM and Mamba, have been proposed that exhibit parallelization benefits during training similar to the Transformer architecture while offering fast inference. In this work, we study the aptitude of these modern recurrent architectures for large action models. Consequently, we propose a Large Recurrent Action Model (LRAM) with an xLSTM at its core that comes with linear-time inference complexity and natural sequence length extrapolation abilities. Experiments on 432 tasks from 6 domains show that LRAM compares favorably to Transformers in terms of performance and speed.
Sliced-Wasserstein-based Anomaly Detection and Open Dataset for Localized Critical Peak Rebates
Julien Pallage
Bertrand Scherrer
Salma Naccache
Christophe B'elanger
In this work, we present a new unsupervised anomaly (outlier) detection (AD) method using the sliced-Wasserstein metric. This filtering tech… (see more)nique is conceptually interesting for MLOps pipelines deploying machine learning models in critical sectors, e.g., energy, as it offers a conservative data selection. Additionally, we open the first dataset showcasing localized critical peak rebate demand response in a northern climate. We demonstrate the capabilities of our method on synthetic datasets as well as standard AD datasets and use it in the making of a first benchmark for our open-source localized critical peak rebate dataset.
Sliced-Wasserstein-based Anomaly Detection and Open Dataset for Localized Critical Peak Rebates
Julien Pallage
Bertrand Scherrer
Salma Naccache
Christophe B'elanger
The Case for Globalizing Fairness: A Mixed Methods Study on Colonialism, AI, and Health in Africa
Mercy Nyamewaa Asiedu
Awa Dieng
Iskandar Haykel
Stephen R. Pfohl
Chirag Nagpal
Maria Nagawa
Abigail Oppong
Sanmi Koyejo
Katherine Heller
With growing application of machine learning (ML) technologies in healthcare, there have been calls for developing techniques to understand … (see more)and mitigate biases these systems may exhibit. Fair-ness considerations in the development of ML-based solutions for health have particular implications for Africa, which already faces inequitable power imbalances between the Global North and South.This paper seeks to explore fairness for global health, with Africa as a case study. We conduct a scoping review to propose axes of disparities for fairness consideration in the African context and delineate where they may come into play in different ML-enabled medical modalities. We then conduct qualitative research studies with 672 general population study participants and 28 experts inML, health, and policy focused on Africa to obtain corroborative evidence on the proposed axes of disparities. Our analysis focuses on colonialism as the attribute of interest and examines the interplay between artificial intelligence (AI), health, and colonialism. Among the pre-identified attributes, we found that colonial history, country of origin, and national income level were specific axes of disparities that participants believed would cause an AI system to be biased.However, there was also divergence of opinion between experts and general population participants. Whereas experts generally expressed a shared view about the relevance of colonial history for the development and implementation of AI technologies in Africa, the majority of the general population participants surveyed did not think there was a direct link between AI and colonialism. Based on these findings, we provide practical recommendations for developing fairness-aware ML solutions for health in Africa.
The State of Data Curation at NeurIPS: An Assessment of Dataset Development Practices in the Datasets and Benchmarks Track
Eshta Bhardwaj
Harshit Gujral
Siyi Wu
Ciara Zogheib
Christoph Becker
Data curation is a field with origins in librarianship and archives, whose scholarship and thinking on data issues go back centuries, if not… (see more) millennia. The field of machine learning is increasingly observing the importance of data curation to the advancement of both applications and fundamental understanding of machine learning models - evidenced not least by the creation of the Datasets and Benchmarks track itself. This work provides an analysis of dataset development practices at NeurIPS through the lens of data curation. We present an evaluation framework for dataset documentation, consisting of a rubric and toolkit developed through a literature review of data curation principles. We use the framework to assess the strengths and weaknesses in current dataset development practices of 60 datasets published in the NeurIPS Datasets and Benchmarks track from 2021-2023. We summarize key findings and trends. Results indicate greater need for documentation about environmental footprint, ethical considerations, and data management. We suggest targeted strategies and resources to improve documentation in these areas and provide recommendations for the NeurIPS peer-review process that prioritize rigorous data curation in ML. Finally, we provide results in the format of a dataset that showcases aspects of recommended data curation practices. Our rubric and results are of interest for improving data curation practices broadly in the field of ML as well as to data curation and science and technology studies scholars studying practices in ML. Our aim is to support continued improvement in interdisciplinary research on dataset practices, ultimately improving the reusability and reproducibility of new datasets and benchmarks, enabling standardized and informed human oversight, and strengthening the foundation of rigorous and responsible ML research.
Doctoral Symposium Committee
Anthony Cleve
Christian Lange
Silvia Breu
Manar H. Alalfi
Mario Luca Bernardi
Cornelia Boldyreff
Marco D'Ambros
Simon Denier
Natalia Dragan
Ekwa Duala-Ekoko
Fausto Fasano
Adnane Ghannem
Carmine Gravino
Maen Hammad
Imed Hammouda
Salima Hassaine
Yue Jia
Zhen Ming Jiang
Adam Kiezun … (see 11 more)
Jay Kothari
Jonathan Memaitre
Naouel Moha
Rocco Oliveto
Denys Poshyvanyk
Michele Risi
Giuseppe Scanniello
Bonita Sharif
Andrew Sutton
Anis Yousefi
Eugenio Zimeo
Manar H. Alalfi Mario Luca Bernardi Cornelia Boldyreff Anthony Cleve Marco D'Ambros Simon Denier Natalia Dragan Ekwa Duala-Ekoko Fausto Fasa… (see more)no Adnane Ghannem Carmine Gravino Maen Hammad Imed Hammouda Salima Hassaine Yue Jia Zhen Ming Jiang Foutse Khomh Adam Kiezun Jay Kothari Jonathan Memaitre Naouel Moha Rocco Oliveto Denys Poshyvanyk Michele Risi Giuseppe Scanniello Bonita Sharif Andrew Sutton Anis Yousefi Eugenio Zimeo
Doctoral Symposium Committee
Anthony Cleve
Christian Lange
Silvia Breu
Manar H. Alalfi
Mario Luca Bernardi
Cornelia Boldyreff
Marco D'Ambros
Simon Denier
Natalia Dragan
Ekwa Duala-Ekoko
Fausto Fasano
Adnane Ghannem
Carmine Gravino
Maen Hammad
Imed Hammouda
Salima Hassaine
Yue Jia
Zhen Ming (Jack) Jiang
Adam Kiezun … (see 11 more)
Jay Kothari
Jonathan Memaitre
Naouel Moha
Rocco Oliveto
Denys Poshyvanyk
Michele Risi
Giuseppe Scanniello
Bonita Sharif
Andrew Sutton
Anis Yousefi
Eugenio Zimeo
Manar H. Alalfi Mario Luca Bernardi Cornelia Boldyreff Anthony Cleve Marco D'Ambros Simon Denier Natalia Dragan Ekwa Duala-Ekoko Fausto Fasa… (see more)no Adnane Ghannem Carmine Gravino Maen Hammad Imed Hammouda Salima Hassaine Yue Jia Zhen Ming Jiang Foutse Khomh Adam Kiezun Jay Kothari Jonathan Memaitre Naouel Moha Rocco Oliveto Denys Poshyvanyk Michele Risi Giuseppe Scanniello Bonita Sharif Andrew Sutton Anis Yousefi Eugenio Zimeo
General Causal Imputation via Synthetic Interventions
Marco Jiralerspong
Thomas Jiralerspong
Vedant Shah
General Causal Imputation via Synthetic Interventions
Marco Jiralerspong
Thomas Jiralerspong
Vedant Shah
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (see more)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.