Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Efficient Deep Reinforcement Learning-Based Supplementary Damping Control with a Coordinated RMS Training and EMT Testing Scheme
We explore three strategies to enhance performance on a wide range of image editing tasks: supervised fine-tuning (SFT), reinforcement learn… (see more)ing (RL), and Chain-of-Thought (CoT) reasoning. In order to study all these components in one consistent framework, we adopt an autoregressive multimodal model that processes textual and visual tokens in a unified manner. We find RL combined with a large multi-modal LLM verifier to be the most effective of these strategies. As a result, we release EARL: Editing with Autoregression and RL, a strong RL-based image editing model that performs competitively on a diverse range of edits compared to strong baselines, despite using much less training data. Thus, EARL pushes the frontier of autoregressive multimodal models on image editing. We release our code, training data, and trained models at https://github.com/mair-lab/EARL.
Zero-shot anomaly detection (ZSAD) enables identifying and localizing defects in unseen categories by relying solely on generalizable featur… (see more)es rather than requiring any labeled examples of anomalies. However, existing ZSAD methods, whether using fixed or learned prompts, struggle under domain shifts because their training data are derived from limited training domains and fail to generalize to new distributions. In this paper, we introduce PILOT, a framework designed to overcome these challenges through two key innovations: (1) a novel dual-branch prompt learning mechanism that dynamically integrates a pool of learnable prompts with structured semantic attributes, enabling the model to adaptively weight the most relevant anomaly cues for each input image; and (2) a label-free test-time adaptation strategy that updates the learnable prompt parameters using high-confidence pseudo-labels from unlabeled test data. Extensive experiments on 13 industrial and medical benchmarks demonstrate that PILOT achieves state-of-the-art performance in both anomaly detection and localization under domain shift.
Zero-shot anomaly detection (ZSAD) enables identifying and localizing defects in unseen categories by relying solely on generalizable featur… (see more)es rather than requiring any labeled examples of anomalies. However, existing ZSAD methods, whether using fixed or learned prompts, struggle under domain shifts because their training data are derived from limited training domains and fail to generalize to new distributions. In this paper, we introduce PILOT, a framework designed to overcome these challenges through two key innovations: (1) a novel dual-branch prompt learning mechanism that dynamically integrates a pool of learnable prompts with structured semantic attributes, enabling the model to adaptively weight the most relevant anomaly cues for each input image; and (2) a label-free test-time adaptation strategy that updates the learnable prompt parameters using high-confidence pseudo-labels from unlabeled test data. Extensive experiments on 13 industrial and medical benchmarks demonstrate that PILOT achieves state-of-the-art performance in both anomaly detection and localization under domain shift.
Traditional recommendation systems represent user preferences in dense representations obtained through black-box encoder models. While thes… (see more)e models often provide strong recommendation performance, they lack interpretability for users, leaving users unable to understand or control the system’s modeling of their preferences. This limitation is especially challenging in music recommendation, where user preferences are highly personal and often evolve based on nuanced qualities like mood, genre, tempo, or instrumentation.
In this paper, we propose an audio prototypical network for controllable music recommendation. This network expresses user preferences in terms of prototypes representative of semantically meaningful features pertaining to musical qualities. We show that the model obtains competitive recommendation performance compared to popular baseline models while also providing interpretable and controllable user profiles.
Despite efforts to mitigate the inherent risks and biases of artificial intelligence (AI) algorithms, these algorithms can disproportionatel… (see more)y impact culturally marginalized groups. A range of approaches has been proposed to address or reduce these risks, including the development of ethical guidelines and principles for responsible AI, as well as technical solutions that promote algorithmic fairness. Drawing on design justice, expansive learning theory, and recent empirical work on participatory AI, we argue that mitigating these harms requires a fundamental re-architecture of the AI production pipeline. This re-design should center co-production, diversity, equity, inclusion (DEI), and multidisciplinary collaboration. We introduce an augmented AI lifecycle consisting of five interconnected phases: co-framing, co-design, co-implementation, co-deployment, and co-maintenance. The lifecycle is informed by four multidisciplinary workshops and grounded in themes of distributed authority and iterative knowledge exchange. Finally, we relate the proposed lifecycle to several leading ethical frameworks and outline key research questions that remain for scaling participatory governance.
Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially du… (see more)e to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract.
We decompose the task into two components: (1) Retrieving related works given a query abstract and (2) Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components.
For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods while providing insights into the LLM's decision-making process.
In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review.
To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations.
We release this evaluation protocol to promote additional research and development in this regard.
Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning.
Particularly, our ``Deep Research" retrieval variant improves coverage by over 5x compared to standard keyword search, addressing a key bottleneck in the pipeline.
Further, we demonstrate that our planning-based approach achieves higher-quality reviews by minimizing hallucinated references in the generated review by 18-26\% compared to existing simpler LLM-based generation methods.