Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
A modified Thompson sampling-based learning algorithm for unknown linear systems
Yi. Ouyang
Mukul Gagrani
Rahul Jain
We revisit the Thompson sampling-based learning algorithm for controlling an unknown linear system with quadratic cost proposed in [1]. This… (see more) algorithm operates in episodes of dynamic length and it is shown to have a regret bound of
In this article, we consider the problem of controlling an unknown linear quadratic Gaussian (LQG) system consisting of multiple subsystems … (see more)connected over a network. Our goal is to minimize and quantify the regret (i.e., loss in performance) of our learning and control strategy with respect to an oracle who knows the system model. Upfront viewing the interconnected subsystems globally and directly using existing LQG learning algorithms for the global system results in a regret that increases super-linearly with the number of subsystems. Instead, we propose a new Thompson sampling-based learning algorithm which exploits the structure of the underlying network. We show that the expected regret of the proposed algorithm is bounded by
Forgetting is a normal process in healthy brains, and evidence suggests that the mammalian brain forgets more than is required based on limi… (see more)tations of mnemonic capacity. Episodic memories, in particular, are liable to be forgotten over time. Researchers have hypothesized that it may be beneficial for decision making to forget episodic memories over time. Reinforcement learning offers a normative framework in which to test such hypotheses. Here, we show that a reinforcement learning agent that uses an episodic memory cache to find rewards in maze environments can forget a large percentage of older memories without any performance impairments, if they utilize mnemonic representations that contain structural information about space. Moreover, we show that some forgetting can actually provide a benefit in performance compared to agents with unbounded memories. Our analyses of the agents show that forgetting reduces the influence of outdated information and states which are not frequently visited on the policies produced by the episodic control system. These results support the hypothesis that some degree of forgetting can be beneficial for decision making, which can help to explain why the brain forgets more than is required by capacity limitations.
Recent years have seen a dramatic increase in studies measuring brain activity, physiological responses, and/or movement data from multiple … (see more)individuals during social interaction. For example, so-called “hyperscanning” research has demonstrated that brain activity may become synchronized across people as a function of a range of factors. Such findings not only underscore the potential of hyperscanning techniques to capture meaningful aspects of naturalistic interactions, but also raise the possibility that hyperscanning can be leveraged as a tool to help improve such naturalistic interactions. Building on our previous work showing that exposing dyads to real-time inter-brain synchrony neurofeedback may help boost their interpersonal connectedness, we describe the biofeedback application Hybrid Harmony, a Brain-Computer Interface (BCI) that supports the simultaneous recording of multiple neurophysiological datastreams and the real-time visualization and sonification of inter-subject synchrony. We report results from 236 dyads experiencing synchrony neurofeedback during naturalistic face-to-face interactions, and show that pairs' social closeness and affective personality traits can be reliably captured with the inter-brain synchrony neurofeedback protocol, which incorporates several different online inter-subject connectivity analyses that can be applied interchangeably. Hybrid Harmony can be used by researchers who wish to study the effects of synchrony biofeedback, and by biofeedback artists and serious game developers who wish to incorporate multiplayer situations into their practice.
Multiple sclerosis (MS) is an inflammatory disorder of the central nervous system. Although conventional magnetic resonance imaging (MRI) is… (see more) widely used for MS diagnosis and clinical follow‐up, quantitative MRI has the potential to provide valuable intrinsic values of tissue properties that can enhance accuracy. In this study, we investigate the efficacy of diffusion MRI in distinguishing MS lesions within the cervical spinal cord, using a combination of metrics extracted from diffusion tensor imaging and Ball‐and‐Stick models.
Barriers and facilitators to patient engagement in patient safety from patients and healthcare professionals' perspectives: A systematic review and meta-synthesis.
AIMS
To explore patients' and healthcare professionals' (HCPs) perceived barriers and facilitators to patient engagement in patient safety.
… (see more)
METHODS
We conducted a systematic review and meta-synthesis from five computerized databases, including PubMed/MEDLINE, Embase, Web of Science, Scopus and PsycINFO, as well as grey literature and reference lists of included studies. Data were last searched in December 2019 with no limitation on the year of publication. Qualitative and Mix-methods studies that explored HCPs' and patients' perceptions of barriers and facilitators to patient engagement in patient safety were included. Two authors independently screened the titles and the abstracts of studies. Next, the full texts of the screened studies were reviewed by two authors. Potential discrepancies were resolved by consensus with a third author. The Mixed Methods Appraisal Tool was used for quality appraisal. Thematic analysis was used to synthesize results.
RESULTS
Nineteen studies out of 2616 were included in this systematic review. Themes related to barriers included: patient unwillingness, HCPs' unwillingness, and inadequate infrastructures. Themes related to facilitators were: encouraging patients, sharing information with patients, establishing trustful relationship, establishing patient-centred care and improving organizational resources.
CONCLUSION
Patients have an active role in improving their safety. Strategies are required to address barriers that hinder or prevent patient engagement and create capacity and facilitate action.