GPAI Report & Policy Guide: Towards Substantive Equality in AI
Join us at Mila on November 26 for the launch of the report and policy guide that outlines actionable recommendations for building inclusive AI ecosystems.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Graphs in Biomedical Image Analysis, Computational Anatomy and Imaging Genetics
Humans interpret texts with respect to some background information, or world knowledge, and we would like to develop automatic reading compr… (see more)ehension systems that can do the same. In this paper, we introduce a task and several models to drive progress towards this goal. In particular, we propose the task of rare entity prediction: given a web document with several entities removed, models are tasked with predicting the correct missing entities conditioned on the document context and the lexical resources. This task is challenging due to the diversity of language styles and the extremely large number of rare entities. We propose two recurrent neural network architectures which make use of external knowledge in the form of entity descriptions. Our experiments show that our hierarchical LSTM model performs significantly better at the rare entity prediction task than those that do not make use of external resources.
2017-09-01
Conference on Empirical Methods in Natural Language Processing (published)
In goal-driven dialogue systems, success is often defined based on a structured definition of the goal. This requires that the dialogue syst… (see more)em be constrained to handle a specific class of goals and that there be a mechanism to measure success with respect to that goal. However, in many human-human dialogues the diversity of goals makes it infeasible to define success in such a way. To address this scenario, we consider the task of automatically predicting success in goal-driven human-human dialogues using only the information communicated between participants in the form of text. We build a dataset from stackoverflow.com which consists of exchanges between two users in the technical domain where ground-truth success labels are available. We then propose a turn-based hierarchical neural network model that can be used to predict success without requiring a structured goal definition. We show this model outperforms rule-based heuristics and other baselines as it is able to detect patterns over the course of a dialogue and capture notions such as gratitude.
Principal component analysis (PCA) is one of the most powerful tools in machine learning. The simplest method for PCA, the power iteration, … (see more)requires O ( 1 / Δ ) full-data passes to recover the principal component of a matrix with eigen-gap Δ. Lanczos, a significantly more complex method, achieves an accelerated rate of O ( 1 / Δ ) passes. Modern applications, however, motivate methods that only ingest a subset of available data, known as the stochastic setting. In the online stochastic setting, simple algorithms like Oja's iteration achieve the optimal sample complexity O ( σ 2 / Δ 2 ) . Unfortunately, they are fully sequential, and also require O ( σ 2 / Δ 2 ) iterations, far from the O ( 1 / Δ ) rate of Lanczos. We propose a simple variant of the power iteration with an added momentum term, that achieves both the optimal sample and iteration complexity. In the full-pass setting, standard analysis shows that momentum achieves the accelerated rate, O ( 1 / Δ ) . We demonstrate empirically that naively applying momentum to a stochastic method, does not result in acceleration. We perform a novel, tight variance analysis that reveals the "breaking-point variance" beyond which this acceleration does not occur. By combining this insight with modern variance reduction techniques, we construct stochastic PCA algorithms, for the online and offline setting, that achieve an accelerated iteration complexity O ( 1 / Δ ) . Due to the embarassingly parallel nature of our methods, this acceleration translates directly to wall-clock time if deployed in a parallel environment. Our approach is very general, and applies to many non-convex optimization problems that can now be accelerated using the same technique.
Time-varying mixture models are useful for representing complex, dynamic distributions. Components in the mixture model can appear and disap… (see more)pear, and persisting components can evolve. This allows great flexibility in streaming data applications where the model can be adjusted as new data arrives. Fitting a mixture model with computational guarantees which can meet real-time requirements is challenging with existing algorithms, especially when the model order can vary with time. Existing approximate inference methods may require multiple restarts to search for a good local solution. Monte-Carlo methods can be used to jointly estimate the model order and model parameters, but when the distribution of each mixand has a high-dimensional parameter space, they suffer from the curse of dimensionality and and from slow convergence. This paper proposes a generative model for time-varying mixture models, tailored for mixtures of discrete-time Markov chains. A novel, deterministic inference procedure is introduced and is shown to be suitable for applications requiring real-time estimation, and the method is guaranteed to converge at each time step. As a motivating application, we model and predict traffic patterns in a transportation network. Experiments illustrate the performance of the scheme and offer insights regarding tuning of the algorithm parameters. The experiments also investigate the predictive power of the proposed model compared to less complex models and demonstrate the superiority of the mixture model approach for prediction of traffic routes in real data.
2017-06-15
IEEE Transactions on Signal Processing (published)
Time-varying mixture models are useful for representing complex, dynamic distributions. Components in the mixture model can appear and disap… (see more)pear, and persisting components can evolve. This allows great flexibility in streaming data applications where the model can be adjusted as new data arrives. Fitting a mixture model with computational guarantees which can meet real-time requirements is challenging with existing algorithms, especially when the model order can vary with time. Existing approximate inference methods may require multiple restarts to search for a good local solution. Monte-Carlo methods can be used to jointly estimate the model order and model parameters, but when the distribution of each mixand has a high-dimensional parameter space, they suffer from the curse of dimensionality and and from slow convergence. This paper proposes a generative model for time-varying mixture models, tailored for mixtures of discrete-time Markov chains. A novel, deterministic inference procedure is introduced and is shown to be suitable for applications requiring real-time estimation, and the method is guaranteed to converge at each time step. As a motivating application, we model and predict traffic patterns in a transportation network. Experiments illustrate the performance of the scheme and offer insights regarding tuning of the algorithm parameters. The experiments also investigate the predictive power of the proposed model compared to less complex models and demonstrate the superiority of the mixture model approach for prediction of traffic routes in real data.
2017-06-15
IEEE Transactions on Signal Processing (published)
Sparse superposition codes (SSCs) are capacity achieving codes whose decoding process is a linear sensing problem. Decoding approaches thus … (see more)exploit the approximate message passing algorithm, which has been proven to be effective in compressing sensing. Previous work from the authors has evaluated the error correction performance of SSCs under finite precision and finite code length. This paper proposes the first SSC encoder and decoder architectures in the literature. The architectures are parametrized and applicable to all SSCs: A set of wide-ranging case studies is then considered, and code-specific approximations, along with implementation results in 65 nm CMOS technology, are then provided. The encoding process can be carried out with low power consumption (≤2.103 mW), while the semi-parallel decoder architecture can reach a throughput of 1.3 Gb/s with a 768 × 6-bit SSC codeword and an area occupation of 2.43 mm2.
2017-05-01
IEEE Transactions on Signal Processing (published)
Sparse superposition codes (SSCs) are capacity achieving codes whose decoding process is a linear sensing problem. Decoding approaches thus … (see more)exploit the approximate message passing algorithm, which has been proven to be effective in compressing sensing. Previous work from the authors has evaluated the error correction performance of SSCs under finite precision and finite code length. This paper proposes the first SSC encoder and decoder architectures in the literature. The architectures are parametrized and applicable to all SSCs: A set of wide-ranging case studies is then considered, and code-specific approximations, along with implementation results in 65 nm CMOS technology, are then provided. The encoding process can be carried out with low power consumption (
2017-05-01
IEEE Transactions on Signal Processing (published)
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next gen… (see more)eration of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable tradeoff between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of path splitting required to decode rate one and single parity check codes. Thus, the number of splitting can be limited while guaranteeing exactly the same error-correction performance as if the paths were forked at each bit estimation. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of path forks in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: It is shown that our design can achieve