Publications

Temporal Regularization for Markov Decision Process
Several applications of Reinforcement Learning suffer from instability due to high variance. This is especially prevalent in high dimensiona… (see more)l domains. Regularization is a commonly used technique in machine learning to reduce variance, at the cost of introducing some bias. Most existing regularization techniques focus on spatial (perceptual) regularization. Yet in reinforcement learning, due to the nature of the Bellman equation, there is an opportunity to also exploit temporal regularization based on smoothness in value estimates over trajectories. This paper explores a class of methods for temporal regularization. We formally characterize the bias induced by this technique using Markov chain concepts. We illustrate the various characteristics of temporal regularization via a sequence of simple discrete and continuous MDPs, and show that the technique provides improvement even in high-dimensional Atari games.
Towards Deep Conversational Recommendations
Raymond Li
Hannes Schulz
Vincent Michalski
There has been growing interest in using neural networks and deep learning techniques to create dialogue systems. Conversational recommendat… (see more)ion is an interesting setting for the scientific exploration of dialogue with natural language as the associated discourse involves goal-driven dialogue that often transforms naturally into more free-form chat. This paper provides two contributions. First, until now there has been no publicly available large-scale data set consisting of real-world dialogues centered around recommendations. To address this issue and to facilitate our exploration here, we have collected ReDial, a data set consisting of over 10,000 conversations centered around the theme of providing movie recommendations. We make this data available to the community for further research. Second, we use this dataset to explore multiple facets of conversational recommendations. In particular we explore new neural architectures, mechanisms and methods suitable for composing conversational recommendation systems. Our dataset allows us to systematically probe model sub-components addressing different parts of the overall problem domain ranging from: sentiment analysis and cold-start recommendation generation to detailed aspects of how natural language is used in this setting in the real world. We combine such sub-components into a full-blown dialogue system and examine its behavior.
Trends and Applications in Knowledge Discovery and Data Mining
Lida Rashidi
Can Wang
Trends and Applications in Knowledge Discovery and Data Mining
Lida Rashidi
Can Wang
Tensor Regression Networks with various Low-Rank Tensor Approximations
Tensor regression networks achieve high compression rate of neural networks while having slight impact on performances. They do so by imposi… (see more)ng low tensor rank structure on the weight matrices of fully connected layers. In recent years, tensor regression networks have been investigated from the perspective of their compressive power, however, the regularization effect of enforcing low-rank tensor structure has not been investigated enough. We study tensor regression networks using various low-rank tensor approximations, aiming to compare the compressive and regularization power of different low-rank constraints. We evaluate the compressive and regularization performances of the proposed model with both deep and shallow convolutional neural networks. The outcome of our experiment suggests the superiority of Global Average Pooling Layer over Tensor Regression Layer when applied to deep convolutional neural network with CIFAR-10 dataset. On the contrary, shallow convolutional neural networks with tensor regression layer and dropout achieved lower test error than both Global Average Pooling and fully-connected layer with dropout function when trained with a small number of samples.
Deep Learning @15 Petaflops/second: Semi-supervised pattern detection for 15 Terabytes of climate data
W. Collins
M. Wehner
M. Prabhat
Thorsten Kurth
Nadathur Satish
Jian Zhang
Evan Racah
Md. Mostofa Ali Patwary
Narayanan Sundaram
Pradeep Dubey
Fast and Flexible Successive-Cancellation List Decoders for Polar Codes
Seyyed Ali Hashemi
Carlo Condo
Polar codes have gained significant amount of attention during the past few years and have been selected as a coding scheme for the next gen… (see more)eration of mobile broadband standard. Among decoding schemes, successive-cancellation list (SCL) decoding provides a reasonable tradeoff between the error-correction performance and hardware implementation complexity when used to decode polar codes, at the cost of limited throughput. The simplified SCL (SSCL) and its extension SSCL-SPC increase the speed of decoding by removing redundant calculations when encountering particular information and frozen bit patterns (rate one and single parity check codes), while keeping the error-correction performance unaltered. In this paper, we improve SSCL and SSCL-SPC by proving that the list size imposes a specific number of path splitting required to decode rate one and single parity check codes. Thus, the number of splitting can be limited while guaranteeing exactly the same error-correction performance as if the paths were forked at each bit estimation. We call the new decoding algorithms Fast-SSCL and Fast-SSCL-SPC. Moreover, we show that the number of path forks in a practical application can be tuned to achieve desirable speed, while keeping the error-correction performance almost unchanged. Hardware architectures implementing both algorithms are then described and implemented: It is shown that our design can achieve
Automatic Differentiation in Myia
Olivier Breuleux
Bart van Merriënboer
Automatic differentiation is an essential feature of machine learning frameworks. However, its implementation in existing frameworks often h… (see more)as limitations. In dataflow programming frameworks such as Theano or TensorFlow the representation used makes supporting higher-order gradients difficult. On the other hand, operator overloading frameworks such as PyTorch are flexible, but do not lend themselves well to optimization. With Myia, we attempt to have the best of both worlds: Building on the work by Pearlmutter and Siskind we implement a first-order gradient operator for a subset of the Python programming language.
A Multisensor Multi-Bernoulli Filter
Augustin-Alexandru Saucan
In this paper, we derive a multisensor multi-Bernoulli (MS-MeMBer) filter for multitarget tracking. Measurements from multiple sensors are e… (see more)mployed by the proposed filter to update a set of tracks modeled as a multi-Bernoulli random finite set. An exact implementation of the MS-MeMBer update procedure is computationally intractable. We propose an efficient approximate implementation by using a greedy measurement partitioning mechanism. The proposed filter allows for Gaussian mixture or particle filter implementations. Numerical simulations conducted for both linear-Gaussian and nonlinear models highlight the improved accuracy of the MS-MeMBer filter and its reduced computational load with respect to the multisensor cardinalized probability hypothesis density filter and the iterated-corrector cardinality-balanced multi-Bernoulli filter especially for low probabilities of detection.
Learnable Explicit Density for Continuous Latent Space and Variational Inference
Chin-Wei Huang
Ahmed Touati
Laurent Dinh
Michal Drozdzal
Mohammad Havaei
In this paper, we study two aspects of the variational autoencoder (VAE): the prior distribution over the latent variables and its correspon… (see more)ding posterior. First, we decompose the learning of VAEs into layerwise density estimation, and argue that having a flexible prior is beneficial to both sample generation and inference. Second, we analyze the family of inverse autoregressive flows (inverse AF) and show that with further improvement, inverse AF could be used as universal approximation to any complicated posterior. Our analysis results in a unified approach to parameterizing a VAE, without the need to restrict ourselves to use factorial Gaussians in the latent real space.
Neural Network Based Nonlinear Weighted Finite Automata
Weighted finite automata (WFA) can expressively model functions defined over strings but are inherently linear models. Given the recent succ… (see more)esses of nonlinear models in machine learning, it is natural to wonder whether ex-tending WFA to the nonlinear setting would be beneficial. In this paper, we propose a novel model of neural network based nonlinearWFA model (NL-WFA) along with a learning algorithm. Our learning algorithm is inspired by the spectral learning algorithm for WFAand relies on a nonlinear decomposition of the so-called Hankel matrix, by means of an auto-encoder network. The expressive power of NL-WFA and the proposed learning algorithm are assessed on both synthetic and real-world data, showing that NL-WFA can lead to smaller model sizes and infer complex grammatical structures from data.
Predicting Future Disease Activity and Treatment Responders for Multiple Sclerosis Patients Using a Bag-of-Lesions Brain Representation
Andrew Doyle
Douglas Arnold