DisKeyword: Tweet Corpora Exploration for Keyword Selection
Sacha Lévy
Homotopic local-global parcellation of the human cerebral cortex from resting-state functional connectivity
Xiaoxuan Yan
Ru Kong
Aihuiping Xue
Qing Yang
Csaba Orban
Lijun An
Avram J. Holmes
Xing Qian
Jianzhong Chen
Xi-Nian Zuo
Juan Helen Zhou
Marielle V Fortier
Ai Peng Tan
Peter Gluckman
Yap Seng Chong
Michael J Meaney
Simon B. Eickhoff
B.T. Thomas Yeo
Commonality in Recommender Systems: Evaluating Recommender Systems to Enhance Cultural Citizenship
Andres Ferraro
Gustavo Ferreira
Georgina Born
Recall, Robustness, and Lexicographic Evaluation
Bhaskar Mitra
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Hyena Hierarchy: Towards Larger Convolutional Language Models
Michael Poli
Stefano Massaroli
Eric Nguyen
Daniel Y Fu
Tri Dao
Stephen Baccus
Stefano Ermon
Christopher Re
Recent advances in deep learning have relied heavily on the use of large Transformers due to their ability to learn at scale. However, the c… (see more)ore building block of Transformers, the attention operator, exhibits quadratic cost in sequence length, limiting the amount of context accessible. Existing subquadratic methods based on low-rank and sparse approximations need to be combined with dense attention layers to match Transformers, indicating a gap in capability. In this work, we propose Hyena, a subquadratic drop-in replacement for attention constructed by interleaving implicitly parametrized long convolutions and data-controlled gating. In recall and reasoning tasks on sequences of thousands to hundreds of thousands of tokens, Hyena improves accuracy by more than 50 points over operators relying on state-spaces and other implicit and explicit methods, matching attention-based models. We set a new state-of-the-art for dense-attention-free architectures on language modeling in standard datasets (WikiText103 and The Pile), reaching Transformer quality with a 20% reduction in training compute required at sequence length 2K. Hyena operators are twice as fast as highly optimized attention at sequence length 8K, and 100x faster at sequence length 64K.
Unsupervised Layer-wise Score Aggregation for Textual OOD Detection
Maxime DARRIN
Guillaume Staerman
Eduardo Dadalto Câmara Gomes
Pierre Colombo
Interpret Your Care: Predicting the Evolution of Symptoms for Cancer Patients
Rupali Bhati
Jennifer Jones
Cancer treatment is an arduous process for patients and causes many side-effects during and post-treatment. The treatment can affect almost … (see more)all body systems and result in pain, fatigue, sleep disturbances, cognitive impairments, etc. These conditions are often under-diagnosed or under-treated. In this paper, we use patient data to predict the evolution of their symptoms such that treatment-related impairments can be prevented or effects meaningfully ameliorated. The focus of this study is on predicting the pain and tiredness level of a patient post their diagnosis. We implement an interpretable decision tree based model called LightGBM on real-world patient data consisting of 20163 patients. There exists a class imbalance problem in the dataset which we resolve using the oversampling technique of SMOTE. Our empirical results show that the value of the previous level of a symptom is a key indicator for prediction and the weighted average deviation in prediction of pain level is 3.52 and of tiredness level is 2.27.