Maximum entropy GFlowNets with soft Q-learning
Maximum flow-based formulation for the optimal location of electric vehicle charging stations
Pierre‐Luc Parent
Miguel F. Anjos
Ribal Atallah
With the increasing effects of climate change, the urgency to step away from fossil fuels is greater than ever before. Electric vehicles (EV… (see more)s) are one way to diminish these effects, but their widespread adoption is often limited by the insufficient availability of charging stations. In this work, our goal is to expand the infrastructure of EV charging stations, in order to provide a better quality of service in terms of user satisfaction (and availability of charging stations). Specifically, our focus is directed towards urban areas. We first propose a model for the assignment of EV charging demand to stations, framing it as a maximum flow problem. This model is the basis for the evaluation of user satisfaction with a given charging infrastructure. Secondly, we incorporate the maximum flow model into a mixed‐integer linear program, where decisions on the opening of new stations and on the expansion of their capacity through additional outlets is accounted for. We showcase our methodology for the city of Montreal, demonstrating the scalability of our approach to handle real‐world scenarios. We conclude that considering both spacial and temporal variations in charging demand is meaningful when solving realistic instances.
McGill NLP Group Submission to the MRL 2024 Shared Task: Ensembling Enhances Effectiveness of Multilingual Small LMs
Senyu Li
Hao Yu
Jessica Ojo
Metric Flow Matching for Smooth Interpolations on the Data Manifold
Kacper Kapusniak
Peter Potaptchik
Teodora Reu
Leo Zhang
Alexander Tong
Michael M. Bronstein
Francesco Di Giovanni
Matching objectives underpin the success of modern generative models and rely on constructing conditional paths that transform a source dist… (see more)ribution into a target distribution. Despite being a fundamental building block, conditional paths have been designed principally under the assumption of Euclidean geometry, resulting in straight interpolations. However, this can be particularly restrictive for tasks such as trajectory inference, where straight paths might lie outside the data manifold, thus failing to capture the underlying dynamics giving rise to the observed marginals. In this paper, we propose Metric Flow Matching (MFM), a novel simulation-free framework for conditional flow matching where interpolants are approximate geodesics learned by minimizing the kinetic energy of a data-induced Riemannian metric. This way, the generative model matches vector fields on the data manifold, which corresponds to lower uncertainty and more meaningful interpolations. We prescribe general metrics to instantiate MFM, independent of the task, and test it on a suite of challenging problems including LiDAR navigation, unpaired image translation, and modeling cellular dynamics. We observe that MFM outperforms the Euclidean baselines, particularly achieving SOTA on single-cell trajectory prediction.
Minimax Exploiter: A Data Efficient Approach for Competitive Self-Play
Daniel Bairamian
Philippe Marcotte
Joshua Romoff
Gabriel Robert
Mirror Descent Algorithms with Nearly Dimension-Independent Rates for Differentially-Private Stochastic Saddle-Point Problems
Tom'as Gonz'alez
Crist'obal Guzm'an
Mitigating Translationese in Low-resource Languages: The Storyboard Approach
Garry Kuwanto
Eno-Abasi Urua
Priscilla A. Amuok
Shamsuddeen Hassan Muhammad
Aremu Anuoluwapo
Verrah Akinyi Otiende
Loice Emma Nanyanga
T. Nyoike
A. D. Akpan
Nsima Ab Udouboh
Idongesit Udeme Archibong
Idara Effiong Moses
Ifeoluwatayo A. Ige
Benjamin A. Ajibade
Olumide Benjamin Awokoya
Idris Abdulmumin
Saminu Mohammad Aliyu
Ruqayya Nasir Iro
Ibrahim Ahmad
Deontae Smith … (see 4 more)
Praise-EL Michaels
Derry Tanti Wijaya
Anietie U Andy
Low-resource languages often face challenges in acquiring high-quality language data due to the reliance on translation-based methods, which… (see more) can introduce the translationese effect. This phenomenon results in translated sentences that lack fluency and naturalness in the target language. In this paper, we propose a novel approach for data collection by leveraging storyboards to elicit more fluent and natural sentences. Our method involves presenting native speakers with visual stimuli in the form of storyboards and collecting their descriptions without direct exposure to the source text. We conducted a comprehensive evaluation comparing our storyboard-based approach with traditional text translation-based methods in terms of accuracy and fluency. Human annotators and quantitative metrics were used to assess translation quality. The results indicate a preference for text translation in terms of accuracy, while our method demonstrates worse accuracy but better fluency in the language focused.
Mixture of Experts in a Mixture of RL settings
Timon Willi
Johan Samir Obando Ceron
Jakob Nicolaus Foerster
Model-based graph reinforcement learning for inductive traffic signal control
François-Xavier Devailly
Denis Larocque
Most reinforcement learning methods for adaptive-traffic-signal-control require training from scratch to be applied on any new intersection … (see more)or after any modification to the road network, traffic distribution, or behavioral constraints experienced during training. Considering 1) the massive amount of experience required to train such methods, and 2) that experience must be gathered by interacting in an exploratory fashion with real road-network-users, such a lack of transferability limits experimentation and applicability. Recent approaches enable learning policies that generalize for unseen road-network topologies and traffic distributions, partially tackling this challenge. However, the literature remains divided between the learning of cyclic (the evolution of connectivity at an intersection must respect a cycle) and acyclic (less constrained) policies, and these transferable methods 1) are only compatible with cyclic constraints and 2) do not enable coordination. We introduce a new model-based method, MuJAM, which, on top of enabling explicit coordination at scale for the first time, pushes generalization further by allowing a generalization to the controllers' constraints. In a zero-shot transfer setting involving both road networks and traffic settings never experienced during training, and in a larger transfer experiment involving the control of 3,971 traffic signal controllers in Manhattan, we show that MuJAM, using both cyclic and acyclic constraints, outperforms domain-specific baselines as well as another transferable approach.
A Model-Based Solution to the Offline Multi-Agent Reinforcement Learning Coordination Problem
Paul Barde
Jakob Nicolaus Foerster
Amy Zhang
Multidomain Object Detection Framework Using Feature Domain Knowledge Distillation.
Da-Wei Jaw
Shih-Chia Huang
Zhihui Lu
Sy-Yen Kuo
Object detection techniques have been widely studied, utilized in various works, and have exhibited robust performance on images with suffic… (see more)ient luminance. However, these approaches typically struggle to extract valuable features from low-luminance images, which often exhibit blurriness and dim appearence, leading to detection failures. To overcome this issue, we introduce an innovative unsupervised feature domain knowledge distillation (KD) framework. The proposed framework enhances the generalization capability of neural networks across both low-and high-luminance domains without incurring additional computational costs during testing. This improvement is made possible through the integration of generative adversarial networks and our proposed unsupervised KD process. Furthermore, we introduce a region-based multiscale discriminator designed to discern feature domain discrepancies at the object level rather than from the global context. This bolsters the joint learning process of object detection and feature domain distillation tasks. Both qualitative and quantitative assessments shown that the proposed method, empowered by the region-based multiscale discriminator and the unsupervised feature domain distillation process, can effectively extract beneficial features from low-luminance images, outperforming other state-of-the-art approaches in both low-and sufficient-luminance domains.
Multimodal foundation world models for generalist embodied agents
Pietro Mazzaglia
Tim Verbelen
Bart Dhoedt
Sai Rajeswar