Mila’s AI for Climate Studio aims to bridge the gap between technology and impact to unlock the potential of AI in tackling the climate crisis rapidly and on a massive scale.
The program recently published its first policy brief, titled "Policy Considerations at the Intersection of Quantum Technologies and Artificial Intelligence," authored by Padmapriya Mohan.
Hugo Larochelle appointed Scientific Director of Mila
An adjunct professor at the Université de Montréal and former head of Google's AI lab in Montréal, Hugo Larochelle is a pioneer in deep learning and one of Canada’s most respected researchers.
We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Publications
Aligner l’intelligence artificielle avec les objectifs de développement durable (ODD) des Nations unies
Background/Objectives: Intrauterine insemination (IUI) is a common first-line approach in the treatment of numerous infertile couples, espec… (see more)ially in cases of unexplained infertility. Its relatively low success rate, however, could benefit from the development of AI-based support tools to predict its outcome, thus helping the clinical management of patients undergoing IUI cycles. Our objective was to develop a robust and accurate machine learning model that predicts pregnancy outcomes following IUI. Methods: A retrospective, observational, and single-center study was conducted. In total, 3535 couples (aged 18–43 years) that underwent IUI between January 2011 and December 2015 were recruited. Twenty-one clinical and laboratory parameters of 9501 IUI cycles were used to train different machine learning algorithms. Accuracy of pregnancy outcome was evaluated by an area under the curve (AUC) analysis. Results: The linear SVM outperformed AdaBoost, Kernel SVM, Random Forest, Extreme Forest, Bagging, and Voting classifiers. Pre-wash sperm concentration, the ovarian stimulation protocol, cycle length, and maternal age were strong predictors of a positive pregnancy test following IUI (AUC = 0.78). Paternal age was found to be the worst predictor. Conclusions: Our Linear SVM model predicts a positive pregnancy outcome following IUI. Although this model shows value for the clinical management of infertile patients and informed decision-making by the patients, further validation using independent datasets is required prior to clinical implementation.
Recent advancements in Large Language Models (LLMs) have catalyzed a paradigm shift from static prediction systems to agentic AI agents capa… (see more)ble of reasoning, interacting with tools, and adapting to complex tasks. While LLM-based agentic systems have shown promise across many domains, their application to medical imaging remains in its infancy. In this work, we introduce AURA, the first visual linguistic explainability agent designed specifically for comprehensive analysis, explanation, and evaluation of medical images. By enabling dynamic interactions, contextual explanations, and hypothesis testing, AURA represents a significant advancement toward more transparent, adaptable, and clinically aligned AI systems. We highlight the promise of agentic AI in transforming medical image analysis from static predictions to interactive decision support. Leveraging Qwen-32B, an LLM-based architecture, AURA integrates a modular toolbox comprising: (i) a segmentation suite with phase grounding, pathology segmentation, and anatomy segmentation to localize clinically meaningful regions; (ii) a counterfactual image-generation module that supports reasoning through image-level explanations; and (iii) a set of evaluation tools including pixel-wise difference-map analysis, classification, and advanced state-of-the-art components to assess diagnostic relevance and visual interpretability.
Computer-aided design (CAD) is the digital construction of 2D and 3D objects, and is central to a wide range of engineering and manufacturin… (see more)g applications like automobile and aviation. Despite its importance, CAD modeling remains largely a time-intensive, manual task. Recent works have attempted to automate this process with small transformer-based models and handcrafted CAD sequence representations. However, there has been little effort to leverage the potential of large language models (LLMs) for sequential CAD design. In this work, we introduce a new large-scale dataset of more than 170k CAD models annotated with high-quality, human-like descriptions generated with our pipeline based on GPT-4.1. Using this dataset, we fine-tune powerful code-LLMs to generate CAD sequences represented in a JSON-based format from natural language descriptions, demonstrating the viability and effectiveness of this approach for text-conditioned CAD generation. Because simple metrics often fail to reflect the quality of generated objects, we introduce geometric and topological metrics based on sphericity, mean curvature, and Euler characteristic to provide richer structural insights. Our experiments and ablation studies on both synthetic and human-annotated data demonstrate that CADmium is able to automate CAD design, drastically speeding up the design of new objects. The dataset, code, and fine-tuned models are available online.
We argue that diffusion models'success in modeling complex distributions is, for the most part, coming from their input conditioning. This p… (see more)aper investigates the representation used to condition diffusion models from the perspective that ideal representations should improve sample fidelity, be easy to generate, and be compositional to allow out-of-training samples generation. We introduce Discrete Latent Code (DLC), an image representation derived from Simplicial Embeddings trained with a self-supervised learning objective. DLCs are sequences of discrete tokens, as opposed to the standard continuous image embeddings. They are easy to generate and their compositionality enables sampling of novel images beyond the training distribution. Diffusion models trained with DLCs have improved generation fidelity, establishing a new state-of-the-art for unconditional image generation on ImageNet. Additionally, we show that composing DLCs allows the image generator to produce out-of-distribution samples that coherently combine the semantics of images in diverse ways. Finally, we showcase how DLCs can enable text-to-image generation by leveraging large-scale pretrained language models. We efficiently finetune a text diffusion language model to generate DLCs that produce novel samples outside of the image generator training distribution.
Exploration remains a key challenge in reinforcement learning (RL), especially in long-horizon tasks and environments with high-dimensional … (see more)observations. A common strategy for effective exploration is to promote state coverage or novelty, which often involves estimating the agent's state visitation distribution. In this paper, we propose \textbf{C}uriosity-Driven Exploration via \textbf{Te}mporal \textbf{C}ontrastive Learning (\methodName), an exploration method based on temporal contrastive learning that rewards agents for reaching states with unexpected futures. This incentivizes uncovering meaningful less-visited states. \methodName is simple and does not require explicit density or uncertainty estimation, while learning representations aligned with the RL objective. It consistently outperforms standard baselines in complex mazes using different embodiments (Ant and Humanoid) and robotic manipulation tasks, while also yielding more diverse behaviors in Craftax without requiring task-specific information.
Effective exploration in reinforcement learning requires keeping track not just of where the agent has been, but also of how the agent think… (see more)s about and represents the world: an agent should explore states that enable it to learn powerful representations. Temporal representations can include the information required to solve any potential task while avoiding the computational cost of reconstruction. In this paper, we propose an exploration method that uses temporal contrastive representations to drive exploration, maximizing coverage as seen through the lens of these temporal representations. We demonstrate complex exploration behaviors in locomotion, manipulation, and embodied-AI tasks, revealing previously unknown capabilities and behaviors once achievable only via extrinsic rewards.
Using speech samples as a biomarker is a promising avenue for detecting and monitoring the progression of Parkinson's disease (PD), but ther… (see more)e is considerable disagreement in the literature about how best to collect and analyze such data. Early research in detecting PD from speech used a sustained vowel phonation (SVP) task, while some recent research has explored recordings of more cognitively demanding tasks. To assess the role of language in PD detection, we tested pretrained models with varying data types and pretraining objectives and found that (1) text-only models match the performance of vocal-feature models, (2) multilingual Whisper outperforms self-supervised models whereas monolingual Whisper does worse, and (3) AudioSet pretraining improves performance on SVP but not spontaneous speech. These findings together highlight the critical role of language for the early detection of Parkinson's disease.
In the era of deep reinforcement learning, making progress is more complex, as the collected experience must be compressed into a deep model… (see more) for future exploitation and sampling. Many papers have shown that training a deep learning policy under the changing state and action distribution leads to sub-optimal performance even collapse. This naturally leads to the concern that even if the community creates improved exploration algorithms or reward objectives, will those improvements fall on the \textit{deaf ears} of optimization difficulties.
This work proposes a new \textit{pracitcal} sub-optimality estimator to determine optimization limitations of deep reinforcement learning algorithms. Through experiments acrossenvironments and RL algorithms, it is shown that the difference between the best data generated is