We use cookies to analyze the browsing and usage of our website and to personalize your experience. You can disable these technologies at any time, but this may limit certain functionalities of the site. Read our Privacy Policy for more information.
Setting cookies
You can enable and disable the types of cookies you wish to accept. However certain choices you make could affect the services offered on our sites (e.g. suggestions, personalised ads, etc.).
Essential cookies
These cookies are necessary for the operation of the site and cannot be deactivated. (Still active)
Analytics cookies
Do you accept the use of cookies to measure the audience of our sites?
Multimedia Player
Do you accept the use of cookies to display and allow you to watch the video content hosted by our partners (YouTube, etc.)?
Navigating through the exponentially large chemical space to search for desirable materials is an extremely challenging task in material dis… (see more)covery. Recent developments in generative and geometric deep learning have shown...
Navigating through the exponentially large chemical space to search for desirable materials is an extremely challenging task in material dis… (see more)covery. Recent developments in generative and geometric deep learning have shown...
In the last years, there has been a great interest in machine‐learning‐based heuristics for solving NP‐hard combinatorial optimization… (see more) problems. The developed methods have shown potential on many optimization problems. In this paper, we present a learned heuristic for the reoptimization of a problem after a minor change in its data. We focus on the case of the capacited vehicle routing problem with static clients (i.e., same client locations) and changed demands. Given the edges of an original solution, the goal is to predict and fix the ones that have a high chance of remaining in an optimal solution after a change of client demands. This partial prediction of the solution reduces the complexity of the problem and speeds up its resolution, while yielding a good quality solution. The proposed approach resulted in solutions with an optimality gap ranging from 0% to 1.7% on different benchmark instances within a reasonable computing time.
Learning Tabu Search Algorithms: A Scheduling Application
Nazgol Niroumandrad
Nadia Lahrichi
Andrea Lodi
. Metaheuristics are widely recognized as efficient approaches for many combinatorial problems. Studies to improve the performance of metahe… (see more)uristics have increasingly relied on the use of various methods either combining different metaheuristics or methods originating outside of the metaheuristic field. This paper presents a learning algorithm to improve tabu search by reducing its search space and the evaluation effort. We study the performance of a learning tabu search algorithm using classification methods in an attempt to select moves through the search space more wisely. The experimental results demonstrate the benefit of using a learning mechanism under deterministic and stochastic conditions.
Reinforcement learning is an attractive approach to learn good resource allocation and scheduling policies based on data when the system mod… (see more)el is unknown. However, the cumulative regret of most RL algorithms scales as ˜ O(S
2024-01-01
IEEE Transactions on Control of Network Systems (published)
List comprehensions are a Pythonic functional construct allowing developers to express in a concise way loops to build and manipulate lists.… (see more) Previous studies point to a gain in speed when list comprehensions are adopted. This paper reports the results of a study that compares the execution time performance of Python code written using list comprehensions as opposed to equivalent imperative programming. To this aim, we have developed a set of transformation rules to map Python for loops into list comprehensions. On the one hand, on artificial code snippets, we found list comprehensions to be faster than procedural code, with differences becoming evident if amplifying the tests, i.e., executing the code fragment thousands of times. On the other hand, this does not happen when executing real-world Python projects, where the performance may or may not improve, depending on the projects' features and the nature of the manipulated objects.