Publications

Towards an AAK Theory Approach to Approximate Minimization in the Multi-Letter Case
We study the approximate minimization problem of weighted finite automata (WFAs): given a WFA, we want to compute its optimal approximation … (see more)when restricted to a given size. We reformulate the problem as a rank-minimization task in the spectral norm, and propose a framework to apply Adamyan-Arov-Krein (AAK) theory to the approximation problem. This approach has already been successfully applied to the case of WFAs and language modelling black boxes over one-letter alphabets \citep{AAK-WFA,AAK-RNN}. Extending the result to multi-letter alphabets requires solving the following two steps. First, we need to reformulate the approximation problem in terms of noncommutative Hankel operators and noncommutative functions, in order to apply results from multivariable operator theory. Secondly, to obtain the optimal approximation we need a version of noncommutative AAK theory that is constructive. In this paper, we successfully tackle the first step, while the second challenge remains open.
Bias-inducing geometries: an exactly solvable data model with fairness implications
Stefano Sarao Mannelli
Federica Gerace
Luca Saglietti
JARV1S: Phenotype Clone Search for Rapid Zero-Day Malware Triage and Functional Decomposition for Cyber Threat Intelligence
Christopher Molloy
Philippe Charland
Steven H. H. Ding
Cyber threat intelligence (CTI) has become a critical component of the defense of organizations against the steady surge of cyber attacks. M… (see more)alware is one of the most challenging problems for CTI, due to its prevalence, the massive number of variants, and the constantly changing threat actor behaviors. Currently, Malpedia has indexed 2,390 unique malware families, while the AVTEST Institute has recorded more than 166 million new unique malware samples in 2021. There exists a vast number of variants per malware family. Consequently, the signature-based representation of patterns and knowledge of legacy systems can no longer be generalized to detect future malware attacks. Machine learning-based solutions can match more variants. However, as a black-box approach, they lack the explainability and maintainability required by incident response teams.There is thus an urgent need for a data-driven system that can abstract a future-proof, human-friendly, systematic, actionable, and dependable knowledge representation from software artifacts from the past for more effective and insightful malware triage. In this paper, we present the first phenotype-based malware decomposition system for quick malware triage that is effective against malware variants. We define phenotypes as directly observable characteristics such as code fragments, constants, functions, and strings. Malware development rarely starts from scratch, and there are many reused components and code fragments. The target under investigation is decomposed into known phenotypes that are mapped to known malware families, malware behaviors, and Advanced Persistent Threat (APT) groups. The implemented system provides visualizable phenotypes through an interactive tree map, helping the cyber analysts to navigate through the decomposition results. We evaluated our system on 200,000 malware samples, 100,000 benign samples, and a malware family with over 27,284 variants. The results indicate our system is scalable, efficient, and effective against zero-day malware and new variants of known families.
Works for Me! Cannot Reproduce – A Large Scale Empirical Study of Non-reproducible Bugs
Mohammad Masudur Rahman
Marco Castelluccio
Contextual bandit optimization of super-resolution microscopy
Anthony Bilodeau
Renaud Bernatchez
Albert Michaud-Gagnon
Flavie Lavoie-Cardinal
Evaluating Multimodal Interactive Agents
Josh Abramson
Arun Ahuja
Federico Carnevale
Petko Georgiev
Alex Goldin
Alden Hung
Jessica Landon
Timothy P. Lillicrap
Alistair M. Muldal
Adam Santoro
Tamara von Glehn
Greg Wayne
Nathaniel Wong
Chen Yan
Creating agents that can interact naturally with humans is a common goal in artificial intelligence (AI) research. However, evaluating these… (see more) interactions is challenging: collecting online human-agent interactions is slow and expensive, yet faster proxy metrics often do not correlate well with interactive evaluation. In this paper, we assess the merits of these existing evaluation metrics and present a novel approach to evaluation called the Standardised Test Suite (STS). The STS uses behavioural scenarios mined from real human interaction data. Agents see replayed scenario context, receive an instruction, and are then given control to complete the interaction offline. These agent continuations are recorded and sent to human annotators to mark as success or failure, and agents are ranked according to the proportion of continuations in which they succeed. The resulting STS is fast, controlled, interpretable, and representative of naturalistic interactions. Altogether, the STS consolidates much of what is desirable across many of our standard evaluation metrics, allowing us to accelerate research progress towards producing agents that can interact naturally with humans. A video may be found at https://youtu.be/YR1TngGORGQ.
Assessing the Quality of Direct-to-Consumer Teleconsultation Services in Canada
Jean Noel Nikiema
Eleah Stringer
Marie-Pierre Moreault
Priscille Pana
Marco Laverdiere
Jean-Louis Denis
Béatrice Godard
Mylaine Breton
Guy Paré
Aviv Shachak
Claudia Lai
Elizabeth M. Borycki
Andre W. Kushniruk
Aude Motulsky
A Conceptual Framework for Representing Events Under Public Health Surveillance
Anya Okhmatovskaia
Yannan Shen
Iris Ganser
Nigel Collier
Nicholas B King
Zaiqiao Meng
Information integration across multiple event-based surveillance (EBS) systems has been shown to improve global disease surveillance in expe… (see more)rimental settings. In practice, however, integration does not occur due to the lack of a common conceptual framework for encoding data within EBS systems. We aim to address this gap by proposing a candidate conceptual framework for representing events and related concepts in the domain of public health surveillance.
MaskEval: Weighted MLM-Based Evaluation for Text Summarization and Simplification
Yu Lu Liu
Rachel Bawden
Thomas Scaliom
Benoı̂t Sagot
ASHA: Assistive Teleoperation via Human-in-the-Loop Reinforcement Learning
Sean Chen
Jensen Gao
Siddharth Reddy
Anca Dragan
Sergey Levine
Building assistive interfaces for controlling robots through arbitrary, high-dimensional, noisy inputs (e.g., webcam images of eye gaze) can… (see more) be challenging, especially when it involves inferring the user's desired action in the absence of a natural ‘default’ interface. Reinforcement learning from online user feedback on the system's performance presents a natural solution to this problem, and enables the interface to adapt to individual users. However, this approach tends to require a large amount of human-in-the-loop training data, especially when feedback is sparse. We propose a hierarchical solution that learns efficiently from sparse user feedback: we use offline pre-training to acquire a latent embedding space of useful, high-level robot behaviors, which, in turn, enables the system to focus on using online user feedback to learn a mapping from user inputs to desired high-level behaviors. The key insight is that access to a pre-trained policy enables the system to learn more from sparse rewards than a naïve RL algorithm: using the pre-trained policy, the system can make use of successful task executions to relabel, in hindsight, what the user actually meant to do during unsuccessful executions. We evaluate our method primarily through a user study with 12 participants who perform tasks in three simulated robotic manipulation domains using a webcam and their eye gaze: flipping light switches, opening a shelf door to reach objects inside, and rotating a valve. The results show that our method successfully learns to map 128-dimensional gaze features to 7-dimensional joint torques from sparse rewards in under 10 minutes of online training, and seamlessly helps users who employ different gaze strategies, while adapting to distributional shift in webcam inputs, tasks, and environments
Improving Source Separation by Explicitly Modeling Dependencies between Sources
Ethan Manilow
Curtis Hawthorne
Bryan Pardo
Jesse Engel
We propose a new method for training a supervised source separation system that aims to learn the interdependent relationships between all c… (see more)ombinations of sources in a mixture. Rather than independently estimating each source from a mix, we reframe the source separation problem as an Orderless Neural Autoregressive Density Estimator (NADE), and estimate each source from both the mix and a random subset of the other sources. We adapt a standard source separation architecture, Demucs, with additional inputs for each individual source, in addition to the input mixture. We randomly mask these input sources during training so that the network learns the conditional dependencies between the sources. By pairing this training method with a blocked Gibbs sampling procedure at inference time, we demonstrate that the network can iteratively improve its separation performance by conditioning a source estimate on its earlier source estimates. Experiments on two source separation datasets show that training a Demucs model with an Orderless NADE approach and using Gibbs sampling (up to 512 steps) at inference time strongly outperforms a Demucs baseline that uses a standard regression loss and direct (one step) estimation of sources.
Real-M: Towards Speech Separation on Real Mixtures
Samuele Cornell
François Grondin
In recent years, deep learning based source separation has achieved impressive results. Most studies, however, still evaluate separation mod… (see more)els on synthetic datasets, while the performance of state-of-the-art techniques on in-the-wild speech data remains an open question. This paper contributes to fill this gap in two ways. First, we release the REAL-M dataset, a crowd-sourced corpus of real-life mixtures. Secondly, we address the problem of performance evaluation of real-life mixtures, where the ground truth is not available. We bypass this issue by carefully designing a blind Scale-Invariant Signal-to-Noise Ratio (SI-SNR) neural estimator. Through a user study, we show that our estimator reliably evaluates the separation performance on real mixtures, i.e. we observe that the performance predictions of the SI-SNR estimator correlate well with human opinions. Moreover, when evaluating popular speech separation models, we observe that the performance trends predicted by our estimator on the REAL-M dataset closely follow the performance trends achieved on synthetic benchmarks.