Portrait of Reihaneh Rabbany

Reihaneh Rabbany

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, McGill University, School of Computer Science
Research Topics
Data Mining
Graph Neural Networks
Learning on Graphs
Natural Language Processing
Representation Learning

Biography

Reihaneh Rabbany is an assistant professor at the School of Computer Science, McGill University, and a core academic member of Mila – Quebec Artificial Intelligence Institute. She is also a Canada CIFAR AI Chair and on the faculty of McGill’s Centre for the Study of Democratic Citizenship.

Before joining McGill, Rabbany was a postdoctoral fellow at the School of Computer Science, Carnegie Mellon University. She completed her PhD in the Department of Computing Science at the University of Alberta.

Rabbany heads McGill’s Complex Data Lab, where she conducts research at the intersection of network science, data mining and machine learning, with a focus on analyzing real-world interconnected data and social good applications.

Current Students

Master's Research - McGill University
Principal supervisor :
PhD - McGill University
Co-supervisor :
Collaborating researcher - University of Mannheim
Principal supervisor :
PhD - McGill University
Co-supervisor :
Master's Research - McGill University
PhD - McGill University
Master's Research - McGill University
Co-supervisor :
PhD - McGill University
Master's Research - McGill University
Master's Research - McGill University
Co-supervisor :
Collaborating researcher
Postdoctorate - McGill University
Collaborating researcher
Principal supervisor :
Research Intern - McGill University
Master's Research - McGill University
Master's Research - Université de Montréal
Principal supervisor :
Collaborating researcher - McGill University
PhD - McGill University
Master's Research - Université de Montréal
Principal supervisor :

Publications

From Intuition to Understanding: Using AI Peers to Overcome Physics Misconceptions
Ruben Weijers
Denton Wu
Hannah Betts
Tamara Jacod
Yuxiang Guan
Vidya Sujaya
Kushal Dev
William Delooze
Ying Wu
Kellin Pelrine
Generative AI has the potential to transform personalization and accessibility of education. However, it raises serious concerns about accur… (see more)acy and helping students become independent critical thinkers. In this study, we designed a helpful yet fallible AI "Peer" to help students correct fundamental physics misconceptions related to Newtonian mechanic concepts. In contrast to approaches that seek near-perfect accuracy to create an authoritative AI tutor or teacher, we directly inform students that this AI can answer up to 40\% of questions incorrectly. In a randomized controlled trial with 165 students, those who engaged in targeted dialogue with the AI Peer achieved post-test scores that were, on average, 10.5 percentage points higher—with over 20 percentage points higher normalized gain—than a control group that discussed physics history. Qualitative feedback indicated that 91% of the treatment group's AI interactions were rated as helpful. Furthermore, by comparing student performance on pre- and post-test questions about the same concept, along with experts' annotations of the AI interactions, we find initial evidence suggesting the improvement in performance does not depend on the correctness of the AI. With further research, the AI Peer paradigm described here could open new possibilities for how we learn, adapt to, and grow with AI.
Rethinking Anti-Misinformation AI
Vidya Sujaya
Kellin Pelrine
Andreea Musulan
This paper takes a position on how anti-misinformation AI works should be developed for the online misinformation context. We observe that t… (see more)he current literature is dominated by works that produce more information for users to process and that this function faces various challenges in bringing meaningful effects to reality. We use anti-misinformation insights from other domains to suggest a redirection of the existing line of work and identify an under-explored opportunity AI can facilitate exploring.
Rethinking Anti-Misinformation AI
Vidya Sujaya
Kellin Pelrine
Andreea Musulan
This paper takes a position on how anti-misinformation AI works should be developed for the online misinformation context. We observe that t… (see more)he current literature is dominated by works that produce more information for users to process and that this function faces various challenges in bringing meaningful effects to reality. We use anti-misinformation insights from other domains to suggest a redirection of the existing line of work and identify an under-explored opportunity AI can facilitate exploring.
PairBench: A Systematic Framework for Selecting Reliable Judge VLMs
Aarash Feizi
Sai Rajeswar
Spandana Gella
Valentina Zantedeschi
Joao Monteiro
As large vision language models (VLMs) are increasingly used as automated evaluators, understanding their ability to effectively compare dat… (see more)a pairs as instructed in the prompt becomes essential. To address this, we present PairBench, a low-cost framework that systematically evaluates VLMs as customizable similarity tools across various modalities and scenarios. Through PairBench, we introduce four metrics that represent key desiderata of similarity scores: alignment with human annotations, consistency for data pairs irrespective of their order, smoothness of similarity distributions, and controllability through prompting. Our analysis demonstrates that no model, whether closed- or open-source, is superior on all metrics; the optimal choice depends on an auto evaluator's desired behavior (e.g., a smooth vs. a sharp judge), highlighting risks of widespread adoption of VLMs as evaluators without thorough assessment. For instance, the majority of VLMs struggle with maintaining symmetric similarity scores regardless of order. Additionally, our results show that the performance of VLMs on the metrics in PairBench closely correlates with popular benchmarks, showcasing its predictive power in ranking models.
PairBench: A Systematic Framework for Selecting Reliable Judge VLMs
Aarash Feizi
Sai Rajeswar
Spandana Gella
Valentina Zantedeschi
Joao Monteiro
As large vision language models (VLMs) are increasingly used as automated evaluators, understanding their ability to effectively compare dat… (see more)a pairs as instructed in the prompt becomes essential. To address this, we present PairBench, a low-cost framework that systematically evaluates VLMs as customizable similarity tools across various modalities and scenarios. Through PairBench, we introduce four metrics that represent key desiderata of similarity scores: alignment with human annotations, consistency for data pairs irrespective of their order, smoothness of similarity distributions, and controllability through prompting. Our analysis demonstrates that no model, whether closed- or open-source, is superior on all metrics; the optimal choice depends on an auto evaluator's desired behavior (e.g., a smooth vs. a sharp judge), highlighting risks of widespread adoption of VLMs as evaluators without thorough assessment. For instance, the majority of VLMs struggle with maintaining symmetric similarity scores regardless of order. Additionally, our results show that the performance of VLMs on the metrics in PairBench closely correlates with popular benchmarks, showcasing its predictive power in ranking models.
Online Influence Campaigns: Strategies and Vulnerabilities
Andreea Musulan
Veronica Xia
Ethan Kosak-Hine
Tom Gibbs
Vidya Sujaya
Kellin Pelrine
U. Montr'eal
Ivado
McGill University
In order to combat the creation and spread of harmful content online, this paper defines and contextualizes the concept of inauthentic, soci… (see more)etal-scale manipulation by malicious actors. We review the literature on societally harmful content and how it proliferates to analyze the manipulation strategies used by such actors and the vulnerabilities they target. We also provide an overview of three case studies of extensive manipulation campaigns to emphasize the severity of the problem. We then address the role that Artificial Intelligence plays in the development and dissemination of harmful content, and how its evolution presents new threats to societal cohesion for countries across the globe. Our survey aims to increase our understanding of not just particular aspects of these threats, but also the strategies underlying their deployment, so we can effectively prepare for the evolving cybersecurity landscape.
Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (see more)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (see more)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
Higher Order Transformers: Enhancing Stock Movement Prediction On Multimodal Time-Series Data
In this paper, we tackle the challenge of predicting stock movements in financial markets by introducing Higher Order Transformers, a novel … (see more)architecture designed for processing multivariate time-series data. We extend the self-attention mechanism and the transformer architecture to a higher order, effectively capturing complex market dynamics across time and variables. To manage computational complexity, we propose a low-rank approximation of the potentially large attention tensor using tensor decomposition and employ kernel attention, reducing complexity to linear with respect to the data size. Additionally, we present an encoder-decoder model that integrates technical and fundamental analysis, utilizing multimodal signals from historical prices and related tweets. Our experiments on the Stocknet dataset demonstrate the effectiveness of our method, highlighting its potential for enhancing stock movement prediction in financial markets.
Higher Order Transformers: Efficient Attention Mechanism for Tensor Structured Data
Transformers are now ubiquitous for sequence modeling tasks, but their extension to multi-dimensional data remains a challenge due to the qu… (see more)adratic cost of the attention mechanism. In this paper, we propose Higher-Order Transformers (HOT), a novel architecture designed to efficiently process data with more than two axes, i.e. higher-order tensors. To address the computational challenges associated with high-order tensor attention, we introduce a novel Kronecker factorized attention mechanism that reduces the attention cost to quadratic in each axis' dimension, rather than quadratic in the total size of the input tensor. To further enhance efficiency, HOT leverages kernelized attention, reducing the complexity to linear. This strategy maintains the model's expressiveness while enabling scalable attention computation. We validate the effectiveness of HOT on two high-dimensional tasks, including multivariate time series forecasting, and 3D medical image classification. Experimental results demonstrate that HOT achieves competitive performance while significantly improving computational efficiency, showcasing its potential for tackling a wide range of complex, multi-dimensional data.
Higher Order Transformers: Efficient Attention Mechanism for Tensor Structured Data
Transformers are now ubiquitous for sequence modeling tasks, but their extension to multi-dimensional data remains a challenge due to the qu… (see more)adratic cost of the attention mechanism. In this paper, we propose Higher-Order Transformers (HOT), a novel architecture designed to efficiently process data with more than two axes, i.e. higher-order tensors. To address the computational challenges associated with high-order tensor attention, we introduce a novel Kronecker factorized attention mechanism that reduces the attention cost to quadratic in each axis' dimension, rather than quadratic in the total size of the input tensor. To further enhance efficiency, HOT leverages kernelized attention, reducing the complexity to linear. This strategy maintains the model's expressiveness while enabling scalable attention computation. We validate the effectiveness of HOT on two high-dimensional tasks, including multivariate time series forecasting, and 3D medical image classification. Experimental results demonstrate that HOT achieves competitive performance while significantly improving computational efficiency, showcasing its potential for tackling a wide range of complex, multi-dimensional data.
Higher Order Transformers: Efficient Attention Mechanism for Tensor Structured Data
Transformers are now ubiquitous for sequence modeling tasks, but their extension to multi-dimensional data remains a challenge due to the qu… (see more)adratic cost of the attention mechanism. In this paper, we propose Higher-Order Transformers (HOT), a novel architecture designed to efficiently process data with more than two axes, i.e. higher-order tensors. To address the computational challenges associated with high-order tensor attention, we introduce a novel Kronecker factorized attention mechanism that reduces the attention cost to quadratic in each axis' dimension, rather than quadratic in the total size of the input tensor. To further enhance efficiency, HOT leverages kernelized attention, reducing the complexity to linear. This strategy maintains the model's expressiveness while enabling scalable attention computation. We validate the effectiveness of HOT on two high-dimensional tasks, including multivariate time series forecasting, and 3D medical image classification. Experimental results demonstrate that HOT achieves competitive performance while significantly improving computational efficiency, showcasing its potential for tackling a wide range of complex, multi-dimensional data.