Portrait of Liam Paull

Liam Paull

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Computer Vision
Deep Learning

Biography

Liam Paull is an associate professor at Université de Montréal and co-leads the Montréal Robotics and Embodied AI Lab (REAL). His lab focuses on a variety of robotics problems, including building representations of the world for such applications as simultaneous localization and mapping, modelling uncertainty, and building better workflows to teach robotic agents new tasks through, for example, simulation or demonstration.

Previously, Paull was a research scientist in the Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology (MIT), where he led the autonomous car project funded by the Toyota Research Institute (TRI). He completed a postdoc with the Marine Robotics Group at MIT, where he worked on Simultaneous Localization and Mapping (SLAM) for underwater robots.

His PhD from the University of New Brunswick in 2013 focused on robust and adaptive planning for underwater vehicles. He is also the co-founder and director of the Duckietown Foundation, which is dedicated to making engaging robotics learning experiences accessible to everyone.

Current Students

Independent visiting researcher - Sapienza
Master's Research - Université de Montréal
Principal supervisor :
Master's Research - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
Co-supervisor :
Collaborating researcher
Co-supervisor :
Collaborating Alumni - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Postdoctorate - Université de Montréal
Collaborating researcher - Université Laval
PhD - Université de Montréal
Co-supervisor :
Master's Research - Université de Montréal

Publications

Rethinking Teacher-Student Curriculum Learning through the Cooperative Mechanics of Experience
Manfred Diaz
Andrea Tacchetti
Teacher-Student Curriculum Learning (TSCL) is a curriculum learning framework that draws inspiration from human cultural transmission and le… (see more)arning. It involves a teacher algorithm shaping the learning process of a learner algorithm by exposing it to controlled experiences. Despite its success, understanding the conditions under which TSCL is effective remains challenging. In this paper, we propose a data-centric perspective to analyze the underlying mechanics of the teacher-student interactions in TSCL. We leverage cooperative game theory to describe how the composition of the set of experiences presented by the teacher to the learner, as well as their order, influences the performance of the curriculum that is found by TSCL approaches. To do so, we demonstrate that for every TSCL problem, there exists an equivalent cooperative game, and several key components of the TSCL framework can be reinterpreted using game-theoretic principles. Through experiments covering supervised learning, reinforcement learning, and classical games, we estimate the cooperative values of experiences and use value-proportional curriculum mechanisms to construct curricula, even in cases where TSCL struggles. The framework and experimental setup we present in this work represent a novel foundation for a deeper exploration of TSCL, shedding light on its underlying mechanisms and providing insights into its broader applicability in machine learning.
CtRL-Sim: Reactive and Controllable Driving Agents with Offline Reinforcement Learning
Luke Rowe
Roger Girgis
Anthony Gosselin
Bruno Carrez
Florian Golemo
Felix Heide
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (see more), agents replayed from offline data do not react to the actions of the AV, and their behaviour cannot be easily controlled to simulate counterfactual scenarios. Existing approaches have attempted to address these shortcomings by proposing methods that rely on heuristics or learned generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning within a physics-enhanced Nocturne simulator to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through the Nocturne simulator to generate a diverse offline reinforcement learning dataset, annotated with various reward terms. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including those representing adversarial behaviours. We demonstrate that CtRL-Sim can efficiently generate diverse and realistic safety-critical scenarios while providing fine-grained control over agent behaviours. Further, we show that fine-tuning our model on simulated safety-critical scenarios generated by our model enhances this controllability.
The Harmonic Exponential Filter for Nonparametric Estimation on Motion Groups
Miguel Saavedra-Ruiz
Steven A. Parkison
Ria Arora
James Richard Forbes
Bayesian estimation is a vital tool in robotics as it allows systems to update the belief of the robot state using incomplete information fr… (see more)om noisy sensors. To render the state estimation problem tractable, many systems assume that the motion and measurement noise, as well as the state distribution, are all unimodal and Gaussian. However, there are numerous scenarios and systems that do not comply with these assumptions. Existing non-parametric filters that are used to model multimodal distributions have drawbacks that limit their ability to represent a diverse set of distributions. In this paper, we introduce a novel approach to nonparametric Bayesian filtering to cope with multimodal distributions using harmonic exponential distributions. This approach leverages two key insights of harmonic exponential distributions: a) the product of two distributions can be expressed as the element-wise addition of their log-likelihood Fourier coefficients, and b) the convolution of two distributions can be efficiently computed as the tensor product of their Fourier coefficients. These observations enable the development of an efficient and exact solution to the Bayes filter up to the band limit of a Fourier transform. We demonstrate our filter's superior performance compared with established nonparametric filtering methods across a range of simulated and real-world localization tasks.
The Harmonic Exponential Filter for Nonparametric Estimation on Motion Groups
Miguel Saavedra-Ruiz
Steven A. Parkison
Ria Arora
James Richard Forbes
Bayesian estimation is a vital tool in robotics as it allows systems to update the robot state belief using incomplete information from nois… (see more)y sensors. To render the state estimation problem tractable, many systems assume that the motion and measurement noise, as well as the state distribution, are unimodal and Gaussian. However, there are numerous scenarios and systems that do not comply with these assumptions. Existing nonparametric filters that are used to model multimodal distributions have drawbacks that limit their ability to represent a diverse set of distributions. This paper introduces a novel approach to nonparametric Bayesian filtering on motion groups, designed to handle multimodal distributions using harmonic exponential distributions. This approach leverages two key insights of harmonic exponential distributions: a) the product of two distributions can be expressed as the element-wise addition of their log-likelihood Fourier coefficients, and b) the convolution of two distributions can be efficiently computed as the tensor product of their Fourier coefficients. These observations enable the development of an efficient and asymptotically exact solution to the Bayes filter up to the band limit of a Fourier transform. We demonstrate our filter's performance compared with established nonparametric filtering methods across simulated and real-world localization tasks.
The Harmonic Exponential Filter for Nonparametric Estimation on Motion Groups
Miguel Saavedra-Ruiz
Steven A. Parkison
Ria Arora
James Richard Forbes
Bayesian estimation is a vital tool in robotics as it allows systems to update the robot state belief using incomplete information from nois… (see more)y sensors. To render the state estimation problem tractable, many systems assume that the motion and measurement noise, as well as the state distribution, are all unimodal and Gaussian. However, there are numerous scenarios and systems that do not comply with these assumptions. Existing nonparametric filters that are used to model multimodal distributions have drawbacks that limit their ability to represent a diverse set of distributions. This letter introduces a novel approach to nonparametric Bayesian filtering on motion groups, designed to handle multimodal distributions using harmonic exponential distributions. This approach leverages two key insights of harmonic exponential distributions: a) the product of two distributions can be expressed as the element-wise addition of their log-likelihood Fourier coefficients, and b) the convolution of two distributions can be efficiently computed as the tensor product of their Fourier coefficients. These observations enable the development of an efficient and asymptotically exact solution to the Bayes filter up to the band limit of a Fourier transform. We demonstrate our filter's superior performance compared with established nonparametric filtering methods across a range of simulated and real-world localization tasks.
The Harmonic Exponential Filter for Nonparametric Estimation on Motion Groups
Miguel Saavedra-Ruiz
Steven A. Parkison
Ria Arora
James Richard Forbes
Bayesian estimation is a vital tool in robotics as it allows systems to update the robot state belief using incomplete information from nois… (see more)y sensors. To render the state estimation problem tractable, many systems assume that the motion and measurement noise, as well as the state distribution, are unimodal and Gaussian. However, there are numerous scenarios and systems that do not comply with these assumptions. Existing nonparametric filters that are used to model multimodal distributions have drawbacks that limit their ability to represent a diverse set of distributions. This paper introduces a novel approach to nonparametric Bayesian filtering on motion groups, designed to handle multimodal distributions using harmonic exponential distributions. This approach leverages two key insights of harmonic exponential distributions: a) the product of two distributions can be expressed as the element-wise addition of their log-likelihood Fourier coefficients, and b) the convolution of two distributions can be efficiently computed as the tensor product of their Fourier coefficients. These observations enable the development of an efficient and asymptotically exact solution to the Bayes filter up to the band limit of a Fourier transform. We demonstrate our filter's performance compared with established nonparametric filtering methods across simulated and real-world localization tasks.
Milnor-Myerson Games and The Principles of Artificial Principal-Agent Problems
Manfred Diaz
Joel Z Leibo
In this paper, we introduce Milnor-Myerson games, a multiplayer interaction structure at the core of machine learning (ML), to shed light on… (see more) the fundamental principles and implications the artificial principal-agent problem has had in landmark ML results like AlphaGo and large language models (LLMs).
ConceptGraphs: Open-Vocabulary 3D Scene Graphs for Perception and Planning
Qiao Gu
Alihusein Kuwajerwala
Sacha Morin
Krishna Murthy
Bipasha Sen
Aditya Agarwal
Corban Rivera
William Paul
Kirsty Ellis
Rama Chellappa
Chuang Gan
Celso M de Melo
Joshua B. Tenenbaum
Antonio Torralba
Florian Shkurti
For robots to perform a wide variety of tasks, they require a 3D representation of the world that is semantically rich, yet compact and effi… (see more)cient for task-driven perception and planning. Recent approaches have attempted to leverage features from large vision-language models to encode semantics in 3D representations. However, these approaches tend to produce maps with per-point feature vectors, which do not scale well in larger environments, nor do they contain semantic spatial relationships between entities in the environment, which are useful for downstream planning. In this work, we propose ConceptGraphs, an open-vocabulary graph-structured representation for 3D scenes. ConceptGraphs is built by leveraging 2D foundation models and fusing their output to 3D by multi-view association. The resulting representations generalize to novel semantic classes, without the need to collect large 3D datasets or finetune models. We demonstrate the utility of this representation through a number of downstream planning tasks that are specified through abstract (language) prompts and require complex reasoning over spatial and semantic concepts. (Project page: https://concept-graphs.github.io/ Explainer video: https://youtu.be/mRhNkQwRYnc )
BACS: Background Aware Continual Semantic Segmentation
Mostafa ElAraby
Ali Harakeh
Semantic segmentation plays a crucial role in enabling comprehensive scene understanding for robotic systems. However, generating annotation… (see more)s is challenging, requiring labels for every pixel in an image. In scenarios like autonomous driving, there's a need to progressively incorporate new classes as the operating environment of the deployed agent becomes more complex. For enhanced annotation efficiency, ideally, only pixels belonging to new classes would be annotated. This approach is known as Continual Semantic Segmentation (CSS). Besides the common problem of classical catastrophic forgetting in the continual learning setting, CSS suffers from the inherent ambiguity of the background, a phenomenon we refer to as the"background shift'', since pixels labeled as background could correspond to future classes (forward background shift) or previous classes (backward background shift). As a result, continual learning approaches tend to fail. This paper proposes a Backward Background Shift Detector (BACS) to detect previously observed classes based on their distance in the latent space from the foreground centroids of previous steps. Moreover, we propose a modified version of the cross-entropy loss function, incorporating the BACS detector to down-weight background pixels associated with formerly observed classes. To combat catastrophic forgetting, we employ masked feature distillation alongside dark experience replay. Additionally, our approach includes a transformer decoder capable of adjusting to new classes without necessitating an additional classification head. We validate BACS's superior performance over existing state-of-the-art methods on standard CSS benchmarks.
Rethinking Teacher-Student Curriculum Learning through the Cooperative Mechanics of Experience
Manfred Diaz
Andrea Tacchetti
Teacher-Student Curriculum Learning (TSCL) is a curriculum learning framework that draws inspiration from human cultural transmission and le… (see more)arning. It involves a teacher algorithm shaping the learning process of a learner algorithm by exposing it to controlled experiences. Despite its success, understanding the conditions under which TSCL is effective remains challenging. In this paper, we propose a data-centric perspective to analyze the underlying mechanics of the teacher-student interactions in TSCL. We leverage cooperative game theory to describe how the composition of the set of experiences presented by the teacher to the learner, as well as their order, influences the performance of the curriculum that is found by TSCL approaches. To do so, we demonstrate that for every TSCL problem, an equivalent cooperative game exists, and several key components of the TSCL framework can be reinterpreted using game-theoretic principles. Through experiments covering supervised learning, reinforcement learning, and classical games, we estimate the cooperative values of experiences and use value-proportional curriculum mechanisms to construct curricula, even in cases where TSCL struggles. The framework and experimental setup we present in this work represents a novel foundation for a deeper exploration of TSCL, shedding light on its underlying mechanisms and providing insights into its broader applicability in machine learning.
CtRL-Sim: Reactive and Controllable Driving Agents with Offline Reinforcement Learning
Luke Rowe
Roger Girgis
Anthony Gosselin
Bruno Carrez
Florian Golemo
Felix Heide
Evaluating autonomous vehicle stacks (AVs) in simulation typically involves replaying driving logs from real-world recorded traffic. However… (see more), agents replayed from offline data are not reactive and hard to intuitively control. Existing approaches address these challenges by proposing methods that rely on heuristics or generative models of real-world data but these approaches either lack realism or necessitate costly iterative sampling procedures to control the generated behaviours. In this work, we take an alternative approach and propose CtRL-Sim, a method that leverages return-conditioned offline reinforcement learning (RL) to efficiently generate reactive and controllable traffic agents. Specifically, we process real-world driving data through a physics-enhanced Nocturne simulator to generate a diverse offline RL dataset, annotated with various rewards. With this dataset, we train a return-conditioned multi-agent behaviour model that allows for fine-grained manipulation of agent behaviours by modifying the desired returns for the various reward components. This capability enables the generation of a wide range of driving behaviours beyond the scope of the initial dataset, including adversarial behaviours. We show that CtRL-Sim can generate realistic safety-critical scenarios while providing fine-grained control over agent behaviours.
Correction to: Multi-agent reinforcement learning for fast-timescale demand response of residential loads
Vincent Mai
Philippe Maisonneuve
Tianyu Zhang
Hadi Nekoei