Portrait of Sarath Chandar

Sarath Chandar

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, Polytechnique Montréal, Department of Computer Engineering and Software Engineering
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Indian Institute of Technology Madras
Research Topics
AI Alignment
Deep Learning
Explainable AI (XAI)
Foundation Models
Interpretability
Large Language Models (LLM)
Lifelong Learning
Medical Machine Learning
Multi-Agent Systems
Natural Language Processing
Online Learning
Optimization
Recurrent Neural Networks
Reinforcement Learning
Representation Learning
Transfer Learning
Trustworthy AI

Biography

Sarath Chandar is an associate professor at Polytechnique Montreal's Department of Computer and Software Engineering, where he leads the Chandar Research Lab. He is also a Core Academic Member at Mila – Quebec Artificial Intelligence Institute and holds a Canada CIFAR AI Chair and the Canada Research Chair in Lifelong Machine Learning.

Chandar’s research interests include lifelong learning, deep learning, optimization, reinforcement learning and natural language processing. To promote research in lifelong learning, Chandar created the Conference on Lifelong Learning Agents (CoLLAs) in 2022, for which he served as program chair in 2022 and 2023.

He has a PhD from Université de Montréal and an MSc (By Research) from the Indian Institute of Technology Madras.

Current Students

Master's Research - Université de Montréal
Research Intern - Polytechnique Montréal
PhD - Polytechnique Montréal
Co-supervisor :
Research Intern - Polytechnique Montréal
Collaborating researcher
Master's Research - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Université de Montréal
Principal supervisor :
PhD - Université de Montréal
PhD - Polytechnique Montréal
PhD - Université de Montréal
Master's Research - Polytechnique Montréal
Postdoctorate - Université de Montréal
PhD - Polytechnique Montréal
Postdoctorate - Polytechnique Montréal
Principal supervisor :
Research Intern - Polytechnique Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Independent visiting researcher
Master's Research - Université de Montréal
Master's Research - Polytechnique Montréal
Master's Research - Université de Montréal
PhD - Polytechnique Montréal
Collaborating researcher - Université de Montréal
Research Intern - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal
PhD - Polytechnique Montréal

Publications

Towards Non-saturating Recurrent Units for Modelling Long-term Dependencies
Chinnadhurai Sankar
Eugene Vorontsov
Modelling long-term dependencies is a challenge for recurrent neural networks. This is primarily due to the fact that gradients vanish durin… (see more)g training, as the sequence length increases. Gradients can be attenuated by transition operators and are attenuated or dropped by activation functions. Canonical architectures like LSTM alleviate this issue by skipping information through a memory mechanism. We propose a new recurrent architecture (Non-saturating Recurrent Unit; NRU) that relies on a memory mechanism but forgoes both saturating activation functions and saturating gates, in order to further alleviate vanishing gradients. In a series of synthetic and real world tasks, we demonstrate that the proposed model is the only model that performs among the top 2 models across all tasks with and without long-term dependencies, when compared against a range of other architectures.
Do Neural Dialog Systems Use the Conversation History Effectively? An Empirical Study
Chinnadhurai Sankar
Sandeep Subramanian
Neural generative models have been become increasingly popular when building conversational agents. They offer flexibility, can be easily ad… (see more)apted to new domains, and require minimal domain engineering. A common criticism of these systems is that they seldom understand or use the available dialog history effectively. In this paper, we take an empirical approach to understanding how these models use the available dialog history by studying the sensitivity of the models to artificially introduced unnatural changes or perturbations to their context at test time. We experiment with 10 different types of perturbations on 4 multi-turn dialog datasets and find that commonly used neural dialog architectures like recurrent and transformer-based seq2seq models are rarely sensitive to most perturbations such as missing or reordering utterances, shuffling words, etc. Also, by open-sourcing our code, we believe that it will serve as a useful diagnostic tool for evaluating dialog systems in the future.
Environments for Lifelong Reinforcement Learning
To achieve general artificial intelligence, reinforcement learning (RL) agents should learn not only to optimize returns for one specific ta… (see more)sk but also to constantly build more complex skills and scaffold their knowledge about the world, without forgetting what has already been learned. In this paper, we discuss the desired characteristics of environments that can support the training and evaluation of lifelong reinforcement learning agents, review existing environments from this perspective, and propose recommendations for devising suitable environments in the future.
On Training Recurrent Neural Networks for Lifelong Learning
Shagun Sodhani
Catastrophic forgetting and capacity saturation are the central challenges of any parametric lifelong learning system. In this work, we stud… (see more)y these challenges in the context of sequential supervised learning with emphasis on recurrent neural networks. To evaluate the models in the lifelong learning setting, we propose a curriculum-based, simple, and intuitive benchmark where the models are trained on tasks with increasing levels of difficulty. To measure the impact of catastrophic forgetting, the model is tested on all the previous tasks as it completes any task. As a step towards developing true lifelong learning systems, we unify Gradient Episodic Memory (a catastrophic forgetting alleviation approach) and Net2Net(a capacity expansion approach). Both these models are proposed in the context of feedforward networks and we evaluate the feasibility of using them for recurrent networks. Evaluation on the proposed benchmark shows that the unified model is more suitable than the constituent models for lifelong learning setting.
Dynamic Neural Turing Machine with Continuous and Discrete Addressing Schemes
Caglar Gulcehre
Kyunghyun Cho
We extend the neural Turing machine (NTM) model into a dynamic neural Turing machine (D-NTM) by introducing trainable address vectors. This … (see more)addressing scheme maintains for each memory cell two separate vectors, content and address vectors. This allows the D-NTM to learn a wide variety of location-based addressing strategies, including both linear and nonlinear ones. We implement the D-NTM with both continuous and discrete read and write mechanisms. We investigate the mechanisms and effects of learning to read and write into a memory through experiments on Facebook bAbI tasks using both a feedforward and GRU controller. We provide extensive analysis of our model and compare different variations of neural Turing machines on this task. We show that our model outperforms long short-term memory and NTM variants. We provide further experimental results on the sequential MNIST, Stanford Natural Language Inference, associative recall, and copy tasks.
A Deep Reinforcement Learning Chatbot (Short Version)
Iulian V. Serban
Chinnadhurai Sankar
Mathieu Germain
Saizheng Zhang
Zhouhan Lin
Sandeep Subramanian
Taesup Kim
Michael Pieper
Nan Rosemary Ke
Sai Rajeswar
Alexandre De Brébisson
Jose Sotelo
Dendi Suhubdy
Alexandre Nguyen
We present MILABOT: a deep reinforcement learning chatbot developed by the Montreal Institute for Learning Algorithms (MILA) for the Amazon … (see more)Alexa Prize competition. MILABOT is capable of conversing with humans on popular small talk topics through both speech and text. The system consists of an ensemble of natural language generation and retrieval models, including neural network and template-based models. By applying reinforcement learning to crowdsourced data and real-world user interactions, the system has been trained to select an appropriate response from the models in its ensemble. The system has been evaluated through A/B testing with real-world users, where it performed significantly better than other systems. The results highlight the potential of coupling ensemble systems with deep reinforcement learning as a fruitful path for developing real-world, open-domain conversational agents.
GuessWhat?! Visual Object Discovery through Multi-modal Dialogue
Harm de Vries
Florian Strub
Olivier Pietquin
We introduce GuessWhat?!, a two-player guessing game as a testbed for research on the interplay of computer vision and dialogue systems. The… (see more) goal of the game is to locate an unknown object in a rich image scene by asking a sequence of questions. Higher-level image understanding, like spatial reasoning and language grounding, is required to solve the proposed task. Our key contribution is the collection of a large-scale dataset consisting of 150K human-played games with a total of 800K visual question-answer pairs on 66K images. We explain our design decisions in collecting the dataset and introduce the oracle and questioner tasks that are associated with the two players of the game. We prototyped deep learning models to establish initial baselines of the introduced tasks.
Generating Factoid Questions With Recurrent Neural Networks: The 30M Factoid Question-Answer Corpus
Iulian V. Serban
Alberto García-Durán
Caglar Gulcehre
Sungjin Ahn
Over the past decade, large-scale supervised learning corpora have enabled machine learning researchers to make substantial advances. Howeve… (see more)r, to this date, there are no large-scale question-answer corpora available. In this paper we present the 30M Factoid Question-Answer Corpus, an enormous question answer pair corpus produced by applying a novel neural network architecture on the knowledge base Freebase to transduce facts into natural language questions. The produced question answer pairs are evaluated both by human evaluators and using automatic evaluation metrics, including well-established machine translation and sentence similarity metrics. Across all evaluation criteria the question-generation model outperforms the competing template-based baseline. Furthermore, when presented to human evaluators, the generated questions appear comparable in quality to real human-generated questions.