Portrait of Jian Tang

Jian Tang

Core Academic Member
Canada CIFAR AI Chair
Associate Professor, HEC Montréal, Department of Decision Sciences
Adjunct Professor, Université de Montréal, Department of Computer Science and Operations Research
Founder, BioGeometry
Research Topics
Computational Biology
Deep Learning
Generative Models
Graph Neural Networks
Molecular Modeling

Biography

Jian Tang is an Associate professor at HEC's Department of Decision Sciences. He is also an Adjunct professor at the Department of Computer Science and Operations Research at University of Montreal and a Core Academic member at Mila - Quebec AI Institute. He is a Canada CIFAR AI Chair and the Founder of BioGeometry, an AI startup that focuses on generative AI for antibody discovery. Tang’s main research interests are deep generative models and graph machine learning, and their applications to drug discovery. He is an international leader in graph machine learning, and LINE, his node representation method, has been widely recognized and cited more than five thousand times. He has also done pioneering work on AI for drug discovery, such as developing the first open-source machine learning frameworks for drug discovery, TorchDrug and TorchProtein.

Current Students

Collaborating researcher
PhD - Université de Montréal
Principal supervisor :
Research Intern - McGill University
PhD - Université de Montréal
Collaborating researcher - Carnegie Mellon University
PhD - Université de Montréal
PhD - Université de Montréal
Principal supervisor :
Collaborating researcher
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal

Publications

Large Language Models can Learn Rules
Zhaocheng Zhu
Yuan Xue
Xinyun Chen
Denny Zhou
Dale Schuurmans
Hanjun Dai
GraphText: Graph Reasoning in Text Space
Jianan Zhao
Le Zhuo
Yikang Shen
Meng Qu
Kai Liu
Michael Bronstein
Zhaocheng Zhu
Large Language Models (LLMs) have gained the ability to assimilate human knowledge and facilitate natural language interactions with both hu… (see more)mans and other LLMs. However, despite their impressive achievements, LLMs have not made significant advancements in the realm of graph machine learning. This limitation arises because graphs encapsulate distinct relational data, making it challenging to transform them into natural language that LLMs understand. In this paper, we bridge this gap with a novel framework, GraphText, that translates graphs into natural language. GraphText derives a graph-syntax tree for each graph that encapsulates both the node attributes and inter-node relationships. Traversal of the tree yields a graph text sequence, which is then processed by an LLM to treat graph tasks as text generation tasks. Notably, GraphText offers multiple advantages. It introduces training-free graph reasoning: even without training on graph data, GraphText with ChatGPT can achieve on par with, or even surpassing, the performance of supervised-trained graph neural networks through in-context learning (ICL). Furthermore, GraphText paves the way for interactive graph reasoning, allowing both humans and LLMs to communicate with the model seamlessly using natural language. These capabilities underscore the vast, yet-to-be-explored potential of LLMs in the domain of graph machine learning.
An Empirical Study of Retrieval-Enhanced Graph Neural Networks
Dingmin Wang
Shengchao Liu
Hanchen Wang
Bernardo Cuenca Grau
Linfeng Song
Le Song
Qi Liu
Graph Neural Networks (GNNs) are effective tools for graph representation learning. Most GNNs rely on a recursive neighborhood aggregation s… (see more)cheme, named message passing, thereby their theoretical expressive power is limited to the first-order Weisfeiler-Lehman test (1-WL). An effective approach to this challenge is to explicitly retrieve some annotated examples used to enhance GNN models. While retrieval-enhanced models have been proved to be effective in many language and vision domains, it remains an open question how effective retrieval-enhanced GNNs are when applied to graph datasets. Motivated by this, we want to explore how the retrieval idea can help augment the useful information learned in the graph neural networks, and we design a retrieval-enhanced scheme called GRAPHRETRIEVAL, which is agnostic to the choice of graph neural network models. In GRAPHRETRIEVAL, for each input graph, similar graphs together with their ground-true labels are retrieved from an existing database. Thus they can act as a potential enhancement to complete various graph property predictive tasks. We conduct comprehensive experiments over 13 datasets, and we observe that GRAPHRETRIEVAL is able to reach substantial improvements over existing GNNs. Moreover, our empirical study also illustrates that retrieval enhancement is a promising remedy for alleviating the long-tailed label distribution problem.
Evaluating Self-Supervised Learning for Molecular Graph Embeddings
Hanchen Wang
Jean Kaddour
Shengchao Liu
Matt J. Kusner
Joan Lasenby
Qi Liu
Graph Self-Supervised Learning (GSSL) provides a robust pathway for acquiring embeddings without expert labelling, a capability that carries… (see more) profound implications for molecular graphs due to the staggering number of potential molecules and the high cost of obtaining labels. However, GSSL methods are designed not for optimisation within a specific domain but rather for transferability across a variety of downstream tasks. This broad applicability complicates their evaluation. Addressing this challenge, we present"Molecular Graph Representation Evaluation"(MOLGRAPHEVAL), generating detailed profiles of molecular graph embeddings with interpretable and diversified attributes. MOLGRAPHEVAL offers a suite of probing tasks grouped into three categories: (i) generic graph, (ii) molecular substructure, and (iii) embedding space properties. By leveraging MOLGRAPHEVAL to benchmark existing GSSL methods against both current downstream datasets and our suite of tasks, we uncover significant inconsistencies between inferences drawn solely from existing datasets and those derived from more nuanced probing. These findings suggest that current evaluation methodologies fail to capture the entirety of the landscape.
Symmetry-Informed Geometric Representation for Molecules, Proteins, and Crystalline Materials
Shengchao Liu
weitao Du
Yanjing Li
Zhuoxinran Li
Zhiling Zheng
Chenru Duan
Zhi-Ming Ma
Omar M. Yaghi
Animashree Anandkumar
Christian Borgs
Jennifer T Chayes
Hongyu Guo
Artificial intelligence for scientific discovery has recently generated significant interest within the machine learning and scientific comm… (see more)unities, particularly in the domains of chemistry, biology, and material discovery. For these scientific problems, molecules serve as the fundamental building blocks, and machine learning has emerged as a highly effective and powerful tool for modeling their geometric structures. Nevertheless, due to the rapidly evolving process of the field and the knowledge gap between science ({\eg}, physics, chemistry, \& biology) and machine learning communities, a benchmarking study on geometrical representation for such data has not been conducted. To address such an issue, in this paper, we first provide a unified view of the current symmetry-informed geometric methods, classifying them into three main categories: invariance, equivariance with spherical frame basis, and equivariance with vector frame basis. Then we propose a platform, coined Geom3D, which enables benchmarking the effectiveness of geometric strategies. Geom3D contains 16 advanced symmetry-informed geometric representation models and 14 geometric pretraining methods over 52 diverse tasks, including small molecules, proteins, and crystalline materials. We hope that Geom3D can, on the one hand, eliminate barriers for machine learning researchers interested in exploring scientific problems; and, on the other hand, provide valuable guidance for researchers in computational chemistry, structural biology, and materials science, aiding in the informed selection of representation techniques for specific applications. The source code is available on \href{https://github.com/chao1224/Geom3D}{the GitHub repository}.
A*Net: A Scalable Path-based Reasoning Approach for Knowledge Graphs
Zhaocheng Zhu
Xinyu Yuan
Mikhail Galkin
Louis-Pascal Xhonneux
Sophie Xhonneux
Ming Zhang
Maxime Gazeau
DiffPack: A Torsional Diffusion Model for Autoregressive Protein Side-Chain Packing
Yang Zhang
Zuobai Zhang
Bozitao Zhong
Sanchit Misra
Proteins play a critical role in carrying out biological functions, and their 3D structures are essential in determining their functions. A… (see more)ccurately predicting the conformation of protein side-chains given their backbones is important for applications in protein structure prediction, design and protein-protein interactions. Traditional methods are computationally intensive and have limited accuracy, while existing machine learning methods treat the problem as a regression task and overlook the restrictions imposed by the constant covalent bond lengths and angles. In this work, we present DiffPack, a torsional diffusion model that learns the joint distribution of side-chain torsional angles, the only degrees of freedom in side-chain packing, by diffusing and denoising on the torsional space. To avoid issues arising from simultaneous perturbation of all four torsional angles, we propose autoregressively generating the four torsional angles from
GAUCHE: A Library for Gaussian Processes in Chemistry
Ryan-Rhys Griffiths
Leo Klarner
Henry Moss
Aditya Ravuri
Sang T. Truong
Bojana Rankovic
Samuel Don Stanton
Yuanqi Du
Arian Rokkum Jamasb
Gary Tom
Julius Schwartz
Austin Tripp
Aryan Deshwal
Gregory Kell
Anthony Bourached
Alex James Chan
Jacob Moss
Chengzhi Guo
Simon Frieder
Alpha Lee … (see 8 more)
Philippe Schwaller
Johannes P. Dürholt
Saudamini Chaurasia
Ji Won Park
Felix Strieth-Kalthoff
Bingqing Cheng
Alan Aspuru-Guzik
We introduce GAUCHE, a library for GAUssian processes in CHEmistry. Gaussian processes have long been a cornerstone of probabilistic machine… (see more) learning, affording particular advantages for uncertainty quantification and Bayesian optimisation. Extending Gaussian processes to chemical representations however is nontrivial, necessitating kernels defined over structured inputs such as graphs, strings and bit vectors. By defining such kernels in GAUCHE, we seek to open the door to powerful tools for uncertainty quantification and Bayesian optimisation in chemistry. Motivated by scenarios frequently encountered in experimental chemistry, we showcase applications for GAUCHE in molecular discovery and chemical reaction optimisation. The codebase is made available at https://github.com/leojklarner/gauche
Pre-Training Protein Encoder via Siamese Sequence-Structure Diffusion Trajectory Prediction
Zuobai Zhang
Minghao Xu
Aurelie Lozano
Vijil Chenthamarakshan
Payel Das
Self-supervised pre-training methods on proteins have recently gained attention, with most approaches focusing on either protein sequences o… (see more)r structures, neglecting the exploration of their joint distribution, which is crucial for a comprehensive understanding of protein functions by integrating co-evolutionary information and structural characteristics. In this work, inspired by the success of denoising diffusion models in generative tasks, we propose the DiffPreT approach to pre-train a protein encoder by sequence-structure joint diffusion modeling. DiffPreT guides the encoder to recover the native protein sequences and structures from the perturbed ones along the joint diffusion trajectory, which acquires the joint distribution of sequences and structures. Considering the essential protein conformational variations, we enhance DiffPreT by a method called Siamese Diffusion Trajectory Prediction (SiamDiff) to capture the correlation between different conformers of a protein. SiamDiff attains this goal by maximizing the mutual information between representations of diffusion trajectories of structurally-correlated conformers. We study the effectiveness of DiffPreT and SiamDiff on both atom- and residue-level structure-based protein understanding tasks. Experimental results show that the performance of DiffPreT is consistently competitive on all tasks, and SiamDiff achieves new state-of-the-art performance, considering the mean ranks on all tasks. Our implementation is available at https://github.com/DeepGraphLearning/SiamDiff.
Scientific discovery in the age of artificial intelligence
Hanchen Wang
Tianfan Fu
Yuanqi Du
Wenhao Gao
Kexin Huang
Ziming Liu
Payal Chandak
Shengchao Liu
Peter Van Katwyk
Andreea Deac
Animashree Anandkumar
K. Bergen
Carla P. Gomes
Shirley Ho
Pushmeet Kohli
Joan Lasenby
Jure Leskovec
Tie-Yan Liu
A. Manrai
Debora Susan Marks … (see 10 more)
Bharath Ramsundar
Le Song
Jimeng Sun
Petar Veličković
Max Welling
Linfeng Zhang
Connor Wilson. Coley
Marinka Žitnik
FusionRetro: Molecule Representation Fusion via In-Context Learning for Retrosynthetic Planning
Songtao Liu
Zhengkai Tu
Minkai Xu
Zuobai Zhang
Lu Lin
Zhitao Ying
Rex Ying
Peilin Zhao
Dinghao Wu
Retrosynthetic planning aims to devise a complete multi-step synthetic route from starting materials to a target molecule. Current strategie… (see more)s use a decoupled approach of single-step retrosynthesis models and search algorithms, taking only the product as the input to predict the reactants for each planning step and ignoring valuable context information along the synthetic route. In this work, we propose a novel framework that utilizes context information for improved retrosynthetic planning. We view synthetic routes as reaction graphs and propose to incorporate context through three principled steps: encode molecules into embeddings, aggregate information over routes, and readout to predict reactants. Our approach is the first attempt to utilize in-context learning for retrosynthesis prediction in retrosynthetic planning. The entire framework can be efficiently optimized in an end-to-end fashion and produce more practical and accurate predictions. Comprehensive experiments demonstrate that by fusing in the context information over routes, our model significantly improves the performance of retrosynthetic planning over baselines that are not context-aware, especially for long synthetic routes. Code is available at https://github.com/SongtaoLiu0823/FusionRetro.
A Group Symmetric Stochastic Differential Equation Model for Molecule Multi-modal Pretraining
Shengchao Liu
weitao Du
Zhi-Ming Ma
Hongyu Guo
Molecule pretraining has quickly become the go-to schema to boost the performance of AI-based drug discovery. Naturally, molecules can be re… (see more)presented as 2D topological graphs or 3D geometric point clouds. Although most existing pertaining methods focus on merely the single modality, recent research has shown that maximizing the mutual information (MI) between such two modalities enhances the molecule representation ability. Meanwhile, existing molecule multi-modal pretraining approaches approximate MI based on the representation space encoded from the topology and geometry, thus resulting in the loss of critical structural information of molecules. To address this issue, we propose MoleculeSDE. MoleculeSDE leverages group symmetric (e.g., SE(3)-equivariant and reflection-antisymmetric) stochastic differential equation models to generate the 3D geometries from 2D topologies, and vice versa, directly in the input space. It not only obtains tighter MI bound but also enables prosperous downstream tasks than the previous work. By comparing with 17 pretraining baselines, we empirically verify that MoleculeSDE can learn an expressive representation with state-of-the-art performance on 26 out of 32 downstream tasks.