Portrait of Gauthier Gidel

Gauthier Gidel

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Generative Models
Machine Learning Theory
Optimization
Reinforcement Learning

Biography

I am an assistant professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal, a core academic member of Mila – Quebec Artificial Intelligence Institute, and a Canada CIFAR AI Chair.

Previously, I was awarded a Borealis AI Graduate Fellowship, worked at DeepMind and Element AI, and was a Long-Term Visitor at the Simons Institute at UC Berkeley.

My research interests lie at the intersection of game theory, optimization and machine learning.

Current Students

Master's Research - Université de Montréal
Collaborating researcher - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Co-supervisor :
Collaborating researcher - Université de Montréal
PhD - Polytechnique Montréal
Principal supervisor :
Independent visiting researcher - Technical Univeristy of Munich
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating Alumni - N/A

Publications

A Persuasive Approach to Combating Misinformation
Safwan Hossain
Yiling Chen
Bayesian Persuasion is proposed as a tool for social media platforms to combat the spread of misinformation. Since platforms can use machine… (see more) learning to predict the popularity and misinformation features of to-be-shared posts, and users are largely motivated to share popular content, platforms can strategically signal this informational advantage to change user beliefs and persuade them not to share misinformation. We characterize the optimal signaling scheme with imperfect predictions as a linear program and give sufficient and necessary conditions on the classifier to ensure optimal platform utility is non-decreasing and continuous. Next, this interaction is considered under a performative model, wherein platform intervention affects the user's future behaviour. The convergence and stability of optimal signaling under this performative process are fully characterized. Lastly, we experimentally validate that our approach significantly reduces misinformation in both the single round and performative setting.
In-Context Learning, Can It Break Safety?
Learning diverse attacks on large language models for robust red-teaming and safety tuning
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe and responsible deployment of lar… (see more)ge language models (LLMs). Developing effective protection against many modes of attack prompts requires discovering diverse attacks. Automated red-teaming typically uses reinforcement learning to fine-tune an attacker language model to generate prompts that elicit undesirable responses from a target LLM, as measured, for example, by an auxiliary toxicity classifier. We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks. As a flexible and probabilistically principled alternative, we propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts. We find that the attacks generated by our method are effective against a wide range of target LLMs, both with and without safety tuning, and transfer well between target LLMs. Finally, we demonstrate that models safety-tuned using a dataset of red-teaming prompts generated by our method are robust to attacks from other RL-based red-teaming approaches.
Learning diverse attacks on large language models for robust red-teaming and safety tuning
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe and responsible deployment of lar… (see more)ge language models (LLMs). Developing effective protection against many modes of attack prompts requires discovering diverse attacks. Automated red-teaming typically uses reinforcement learning to fine-tune an attacker language model to generate prompts that elicit undesirable responses from a target LLM, as measured, for example, by an auxiliary toxicity classifier. We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks. As a flexible and probabilistically principled alternative, we propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts. We find that the attacks generated by our method are effective against a wide range of target LLMs, both with and without safety tuning, and transfer well between target LLMs. Finally, we demonstrate that models safety-tuned using a dataset of red-teaming prompts generated by our method are robust to attacks from other RL-based red-teaming approaches.
Learning diverse attacks on large language models for robust red-teaming and safety tuning
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe and responsible deployment of lar… (see more)ge language models (LLMs). Developing effective protection against many modes of attack prompts requires discovering diverse attacks. Automated red-teaming typically uses reinforcement learning to fine-tune an attacker language model to generate prompts that elicit undesirable responses from a target LLM, as measured, for example, by an auxiliary toxicity classifier. We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks. As a flexible and probabilistically principled alternative, we propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts. We find that the attacks generated by our method are effective against a wide range of target LLMs, both with and without safety tuning, and transfer well between target LLMs. Finally, we demonstrate that models safety-tuned using a dataset of red-teaming prompts generated by our method are robust to attacks from other RL-based red-teaming approaches.
Learning diverse attacks on large language models for robust red-teaming and safety tuning
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe and responsible deployment of lar… (see more)ge language models (LLMs). Developing effective protection against many modes of attack prompts requires discovering diverse attacks. Automated red-teaming typically uses reinforcement learning to fine-tune an attacker language model to generate prompts that elicit undesirable responses from a target LLM, as measured, for example, by an auxiliary toxicity classifier. We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks. As a flexible and probabilistically principled alternative, we propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts. We find that the attacks generated by our method are effective against a wide range of target LLMs, both with and without safety tuning, and transfer well between target LLMs. Finally, we demonstrate that models safety-tuned using a dataset of red-teaming prompts generated by our method are robust to attacks from other RL-based red-teaming approaches.
Efficient Adversarial Training in LLMs with Continuous Attacks
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (see more)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Efficient Adversarial Training in LLMs with Continuous Attacks
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (see more)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on five models from different families (Gemma, Phi3, Mistral, Zephyr, Llama2) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Efficient Adversarial Training in LLMs with Continuous Attacks
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (see more)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on five models from different families (Gemma, Phi3, Mistral, Zephyr, Llama2) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient---and no data samples---to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is *simulation-free*, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
Deep Equilibrium Models For Algorithmic Reasoning
In this blogpost we discuss the idea of teaching neural networks to reach fixed points when reasoning. Specifically, on the algorithmic reas… (see more)oning benchmark CLRS the current neural networks are told the number of reasoning steps they need. While a quick fix is to add a termination network that predicts when to stop, a much more salient inductive bias is that the neural network shouldn't change it's answer any further once the answer is correct, i.e. it should reach a fixed point. This is supported by denotational semantics, which tells us that while loops that terminate are the minimum fixed points of a function. We implement this idea with the help of deep equilibrium models and discuss several hurdles one encounters along the way. We show on several algorithms from the CLRS benchmark the partial success of this approach and the difficulty in making it work robustly across all algorithms.