Portrait of Gauthier Gidel

Gauthier Gidel

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Generative Models
Machine Learning Theory
Optimization
Reinforcement Learning

Biography

I am an assistant professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal, a core academic member of Mila – Quebec Artificial Intelligence Institute, and a Canada CIFAR AI Chair.

Previously, I was awarded a Borealis AI Graduate Fellowship, worked at DeepMind and Element AI, and was a Long-Term Visitor at the Simons Institute at UC Berkeley.

My research interests lie at the intersection of game theory, optimization and machine learning.

Current Students

Master's Research - Université de Montréal
Collaborating Alumni - Polytechnique Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Research Intern - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Polytechnique Montréal
Principal supervisor :
Research Intern - Université de Montréal
Independent visiting researcher - Technical Univeristy of Munich
Research Intern - Université de Montréal
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
Collaborating Alumni - N/A

Publications

Adversarial Alignment for LLMs Requires Simpler, Reproducible, and More Measurable Objectives
Yan Scholten
Tom Wollschlager
Stephen Casper
Stephan Günnemann
Adversarial Alignment for LLMs Requires Simpler, Reproducible, and More Measurable Objectives
Yan Scholten
Tom Wollschlager
Stephen Casper
Stephan Günnemann
Misaligned research objectives have considerably hindered progress in adversarial robustness research over the past decade. For instance, an… (see more) extensive focus on optimizing target metrics, while neglecting rigorous standardized evaluation, has led researchers to pursue ad-hoc heuristic defenses that were seemingly effective. Yet, most of these were exposed as flawed by subsequent evaluations, ultimately contributing little measurable progress to the field. In this position paper, we illustrate that current research on the robustness of large language models (LLMs) risks repeating past patterns with potentially worsened real-world implications. To address this, we argue that realigned objectives are necessary for meaningful progress in adversarial alignment. To this end, we build on established cybersecurity taxonomy to formally define differences between past and emerging threat models that apply to LLMs. Using this framework, we illustrate that progress requires disentangling adversarial alignment into addressable sub-problems and returning to core academic principles, such as measureability, reproducibility, and comparability. Although the field presents significant challenges, the fresh start on adversarial robustness offers the unique opportunity to build on past experience while avoiding previous mistakes.
Advantage Alignment Algorithms
Juan Agustin Duque
Milad Aghajohari
Tim Cooijmans
Learning diverse attacks on large language models for robust red-teaming and safety tuning
Minsu Kim
Juho Lee
Sung Ju Hwang
Kenji Kawaguchi
Moksh J. Jain
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe and responsible deployment of lar… (see more)ge language models (LLMs). Developing effective protection against many modes of attack prompts requires discovering diverse attacks. Automated red-teaming typically uses reinforcement learning to fine-tune an attacker language model to generate prompts that elicit undesirable responses from a target LLM, as measured, for example, by an auxiliary toxicity classifier. We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks. As a flexible and probabilistically principled alternative, we propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts. We find that the attacks generated by our method are effective against a wide range of target LLMs, both with and without safety tuning, and transfer well between target LLMs. Finally, we demonstrate that models safety-tuned using a dataset of red-teaming prompts generated by our method are robust to attacks from other RL-based red-teaming approaches.
Solving Hidden Monotone Variational Inequalities with Surrogate Losses
Deep learning has proven to be effective in a wide variety of loss minimization problems. However, many applications of interest, like minim… (see more)izing projected Bellman error and min-max optimization, cannot be modelled as minimizing a scalar loss function but instead correspond to solving a variational inequality (VI) problem. This difference in setting has caused many practical challenges as naive gradient-based approaches from supervised learning tend to diverge and cycle in the VI case. In this work, we propose a principled surrogate-based approach compatible with deep learning to solve VIs. We show that our surrogate-based approach has three main benefits: (1) under assumptions that are realistic in practice (when hidden monotone structure is present, interpolation, and sufficient optimization of the surrogates), it guarantees convergence, (2) it provides a unifying perspective of existing methods, and (3) is amenable to existing deep learning optimizers like ADAM. Experimentally, we demonstrate our surrogate-based approach is effective in min-max optimization and minimizing projected Bellman error. Furthermore, in the deep reinforcement learning case, we propose a novel variant of TD(0) which is more compute and sample efficient.
Tight Lower Bounds and Improved Convergence in Performative Prediction
Pedram J. Khorsandi
Mehrnaz Mofakhami
Performative prediction is a framework accounting for the shift in the data distribution induced by the prediction of a model deployed in th… (see more)e real world. Ensuring rapid convergence to a stable solution where the data distribution remains the same after the model deployment is crucial, especially in evolving environments. This paper extends the Repeated Risk Minimization (RRM) framework by utilizing historical datasets from previous retraining snapshots, yielding a class of algorithms that we call Affine Risk Minimizers and enabling convergence to a performatively stable point for a broader class of problems. We introduce a new upper bound for methods that use only the final iteration of the dataset and prove for the first time the tightness of both this new bound and the previous existing bounds within the same regime. We also prove that utilizing historical datasets can surpass the lower bound for last iterate RRM, and empirically observe faster convergence to the stable point on various performative prediction benchmarks. We offer at the same time the first lower bound analysis for RRM within the class of Affine Risk Minimizers, quantifying the potential improvements in convergence speed that could be achieved with other variants in our framework.
Tight Lower Bounds and Improved Convergence in Performative Prediction
Pedram J. Khorsandi
Mehrnaz Mofakhami
Performative prediction is a framework accounting for the shift in the data distribution induced by the prediction of a model deployed in th… (see more)e real world. Ensuring rapid convergence to a stable solution where the data distribution remains the same after the model deployment is crucial, especially in evolving environments. This paper extends the Repeated Risk Minimization (RRM) framework by utilizing historical datasets from previous retraining snapshots, yielding a class of algorithms that we call Affine Risk Minimizers and enabling convergence to a performatively stable point for a broader class of problems. We introduce a new upper bound for methods that use only the final iteration of the dataset and prove for the first time the tightness of both this new bound and the previous existing bounds within the same regime. We also prove that utilizing historical datasets can surpass the lower bound for last iterate RRM, and empirically observe faster convergence to the stable point on various performative prediction benchmarks. We offer at the same time the first lower bound analysis for RRM within the class of Affine Risk Minimizers, quantifying the potential improvements in convergence speed that could be achieved with other variants in our framework.
Solving Hidden Monotone Variational Inequalities with Surrogate Losses
Deep learning has proven to be effective in a wide variety of loss minimization problems. However, many applications of interest, like minim… (see more)izing projected Bellman error and min-max optimization, cannot be modelled as minimizing a scalar loss function but instead correspond to solving a variational inequality (VI) problem. This difference in setting has caused many practical challenges as naive gradient-based approaches from supervised learning tend to diverge and cycle in the VI case. In this work, we propose a principled surrogate-based approach compatible with deep learning to solve VIs. We show that our surrogate-based approach has three main benefits: (1) under assumptions that are realistic in practice (when hidden monotone structure is present, interpolation, and sufficient optimization of the surrogates), it guarantees convergence, (2) it provides a unifying perspective of existing methods, and (3) is amenable to existing deep learning optimizers like ADAM. Experimentally, we demonstrate our surrogate-based approach is effective in min-max optimization and minimizing projected Bellman error. Furthermore, in the deep reinforcement learning case, we propose a novel variant of TD(0) which is more compute and sample efficient.
General Causal Imputation via Synthetic Interventions
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (see more)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.
General Causal Imputation via Synthetic Interventions
Given two sets of elements (such as cell types and drug compounds), researchers typically only have access to a limited subset of their inte… (see more)ractions. The task of causal imputation involves using this subset to predict unobserved interactions. Squires et al. (2022) have proposed two estimators for this task based on the synthetic interventions (SI) estimator: SI-A (for actions) and SI-C (for contexts). We extend their work and introduce a novel causal imputation estimator, generalized synthetic interventions (GSI). We prove the identifiability of this estimator for data generated from a more complex latent factor model. On synthetic and real data we show empirically that it recovers or outperforms their estimators.
General Causal Imputation via Synthetic Interventions
Investigating the Benefits of Nonlinear Action Maps in Data-Driven Teleoperation
Matthew E. Taylor
Martin Jägersand
Justus Piater
Samuele Tosatto
As robots become more common for both able-bodied individuals and those living with a disability, it is increasingly important that lay peop… (see more)le be able to drive multi-degree-of-freedom platforms with low-dimensional controllers. One approach is to use state-conditioned action mapping methods to learn mappings between low-dimensional controllers and high DOF manipulators -- prior research suggests these mappings can simplify the teleoperation experience for users. Recent works suggest that neural networks predicting a local linear function are superior to the typical end-to-end multi-layer perceptrons because they allow users to more easily undo actions, providing more control over the system. However, local linear models assume actions exist on a linear subspace and may not capture nuanced actions in training data. We observe that the benefit of these mappings is being an odd function concerning user actions, and propose end-to-end nonlinear action maps which achieve this property. Unfortunately, our experiments show that such modifications offer minimal advantages over previous solutions. We find that nonlinear odd functions behave linearly for most of the control space, suggesting architecture structure improvements are not the primary factor in data-driven teleoperation. Our results suggest other avenues, such as data augmentation techniques and analysis of human behavior, are necessary for action maps to become practical in real-world applications, such as in assistive robotics to improve the quality of life of people living with w disability.