Portrait of Gauthier Gidel

Gauthier Gidel

Core Academic Member
Canada CIFAR AI Chair
Assistant Professor, Université de Montréal, Department of Computer Science and Operations Research
Research Topics
Generative Models
Machine Learning Theory
Optimization
Reinforcement Learning

Biography

I am an assistant professor in the Department of Computer Science and Operations Research (DIRO) at Université de Montréal, a core academic member of Mila – Quebec Artificial Intelligence Institute, and a Canada CIFAR AI Chair.

Previously, I was awarded a Borealis AI Graduate Fellowship, worked at DeepMind and Element AI, and was a Long-Term Visitor at the Simons Institute at UC Berkeley.

My research interests lie at the intersection of game theory, optimization and machine learning.

Current Students

Independent visiting researcher - UBC
Master's Research - Polytechnique Montréal
Principal supervisor :
Collaborating Alumni - Université de Montréal
Co-supervisor :
Collaborating researcher
PhD - Université de Montréal
PhD - Université de Montréal
Postdoctorate - McGill University
Principal supervisor :
PhD - McGill University
Principal supervisor :
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Master's Research - Université de Montréal
Co-supervisor :
PhD - Université de Montréal
Principal supervisor :
Independent visiting researcher - Technical Univeristy of Munich
PhD - Université de Montréal
PhD - Université de Montréal
Co-supervisor :

Publications

Efficient Adversarial Training in LLMs with Continuous Attacks
Sophie Xhonneux
Stephan Günnemann
Leo Schwinn
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial tra… (see more)ining has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
Joey Bose
Sarthak Mittal
Pablo Lemos
Cheng-Hao Liu
Marcin Sendera
Nikolay Malkin
Alexander Tong
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient---and no data samples---to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is *simulation-free*, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
Sarah Frank-Wolfe: Methods for Constrained Optimization with Best Rates and Practical Features
Aleksandr Beznosikov
David Dobre
Deep Equilibrium Models For Algorithmic Reasoning
Sophie Xhonneux
Yu He
Andreea Deac
In this blogpost we discuss the idea of teaching neural networks to reach fixed points when reasoning. Specifically, on the algorithmic reas… (see more)oning benchmark CLRS the current neural networks are told the number of reasoning steps they need. While a quick fix is to add a termination network that predicts when to stop, a much more salient inductive bias is that the neural network shouldn't change it's answer any further once the answer is correct, i.e. it should reach a fixed point. This is supported by denotational semantics, which tells us that while loops that terminate are the minimum fixed points of a function. We implement this idea with the help of deep equilibrium models and discuss several hurdles one encounters along the way. We show on several algorithms from the CLRS benchmark the partial success of this approach and the difficulty in making it work robustly across all algorithms.
Deep Equilibrium Models For Algorithmic Reasoning
Sophie Xhonneux
Yu He
Andreea Deac
In this blogpost we discuss the idea of teaching neural networks to reach fixed points when reasoning. Specifically, on the algorithmic reas… (see more)oning benchmark CLRS the current neural networks are told the number of reasoning steps they need. While a quick fix is to add a termination network that predicts when to stop, a much more salient inductive bias is that the neural network shouldn't change it's answer any further once the answer is correct, i.e. it should reach a fixed point. This is supported by denotational semantics, which tells us that while loops that terminate are the minimum fixed points of a function. We implement this idea with the help of deep equilibrium models and discuss several hurdles one encounters along the way. We show on several algorithms from the CLRS benchmark the partial success of this approach and the difficulty in making it work robustly across all algorithms.
Iterated Denoising Energy Matching for Sampling from Boltzmann Densities
Tara Akhound-Sadegh
Jarrid Rector-Brooks
Joey Bose
Sarthak Mittal
Pablo Lemos
Cheng-Hao Liu
Marcin Sendera
Nikolay Malkin
Alexander Tong
Efficiently generating statistically independent samples from an unnormalized probability distribution, such as equilibrium samples of many-… (see more)body systems, is a foundational problem in science. In this paper, we propose Iterated Denoising Energy Matching (iDEM), an iterative algorithm that uses a novel stochastic score matching objective leveraging solely the energy function and its gradient -- and no data samples -- to train a diffusion-based sampler. Specifically, iDEM alternates between (I) sampling regions of high model density from a diffusion-based sampler and (II) using these samples in our stochastic matching objective to further improve the sampler. iDEM is scalable to high dimensions as the inner matching objective, is simulation-free, and requires no MCMC samples. Moreover, by leveraging the fast mode mixing behavior of diffusion, iDEM smooths out the energy landscape enabling efficient exploration and learning of an amortized sampler. We evaluate iDEM on a suite of tasks ranging from standard synthetic energy functions to invariant
In-Context Learning Can Re-learn Forbidden Tasks
Sophie Xhonneux
David Dobre
Despite significant investment into safety training, large language models (LLMs) deployed in the real world still suffer from numerous vuln… (see more)erabilities. One perspective on LLM safety training is that it algorithmically forbids the model from answering toxic or harmful queries. To assess the effectiveness of safety training, in this work, we study forbidden tasks, i.e., tasks the model is designed to refuse to answer. Specifically, we investigate whether in-context learning (ICL) can be used to re-learn forbidden tasks despite the explicit fine-tuning of the model to refuse them. We first examine a toy example of refusing sentiment classification to demonstrate the problem. Then, we use ICL on a model fine-tuned to refuse to summarise made-up news articles. Finally, we investigate whether ICL can undo safety training, which could represent a major security risk. For the safety task, we look at Vicuna-7B, Starling-7B, and Llama2-7B. We show that the attack works out-of-the-box on Starling-7B and Vicuna-7B but fails on Llama2-7B. Finally, we propose an ICL attack that uses the chat template tokens like a prompt injection attack to achieve a better attack success rate on Vicuna-7B and Starling-7B. Trigger Warning: the appendix contains LLM-generated text with violence, suicide, and misinformation.
When is Momentum Extragradient Optimal? A Polynomial-Based Analysis
Junhyung Lyle Kim
Anastasios Kyrillidis
Fabian Pedregosa
The extragradient method has gained popularity due to its robust convergence properties for differentiable games. Unlike single-objective op… (see more)timization, game dynamics involve complex interactions reflected by the eigenvalues of the game vector field's Jacobian scattered across the complex plane. This complexity can cause the simple gradient method to diverge, even for bilinear games, while the extragradient method achieves convergence. Building on the recently proven accelerated convergence of the momentum extragradient method for bilinear games \citep{azizian2020accelerating}, we use a polynomial-based analysis to identify three distinct scenarios where this method exhibits further accelerated convergence. These scenarios encompass situations where the eigenvalues reside on the (positive) real line, lie on the real line alongside complex conjugates, or exist solely as complex conjugates. Furthermore, we derive the hyperparameters for each scenario that achieve the fastest convergence rate.
Expected flow networks in stochastic environments and two-player zero-sum games
Marco Jiralerspong
Bilun Sun
Danilo Vucetic
Tianyu Zhang
Nikolay Malkin
Synaptic Weight Distributions Depend on the Geometry of Plasticity
Roman Pogodin
Jonathan Cornford
Arna Ghosh
A growing literature in computational neuroscience leverages gradient descent and learning algorithms that approximate it to study synaptic … (see more)plasticity in the brain. However, the vast majority of this work ignores a critical underlying assumption: the choice of distance for synaptic changes - i.e. the geometry of synaptic plasticity. Gradient descent assumes that the distance is Euclidean, but many other distances are possible, and there is no reason that biology necessarily uses Euclidean geometry. Here, using the theoretical tools provided by mirror descent, we show that the distribution of synaptic weights will depend on the geometry of synaptic plasticity. We use these results to show that experimentally-observed log-normal weight distributions found in several brain areas are not consistent with standard gradient descent (i.e. a Euclidean geometry), but rather with non-Euclidean distances. Finally, we show that it should be possible to experimentally test for different synaptic geometries by comparing synaptic weight distributions before and after learning. Overall, our work shows that the current paradigm in theoretical work on synaptic plasticity that assumes Euclidean synaptic geometry may be misguided and that it should be possible to experimentally determine the true geometry of synaptic plasticity in the brain.
On the Stability of Iterative Retraining of Generative Models on their own Data
Quentin Bertrand
Joey Bose
Alexandre Duplessis
Marco Jiralerspong
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical … (see more)human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models will be trained on both clean and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets---from classical training on real data to self-consuming generative models trained on purely synthetic data. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
High-Probability Convergence for Composite and Distributed Stochastic Minimization and Variational Inequalities with Heavy-Tailed Noise.
Eduard Gorbunov
Abdurakhmon Sadiev
Marina Danilova
Samuel Horváth
Pavel Dvurechensky
Alexander Gasnikov
Peter Richtárik